
Load balancing and
traffic engineering:
constructive interference

Nikhil Handigol, RameshRameshRameshRamesh JohariJohariJohariJohari, , , , Nick McKeown

Stanford University

April 12, 2011

2

Overview

• CDN operators ask:

Given network conditions, what server will offer

minimum latency to a given client?

• Network operators/ISPs ask:

Given traffic patterns, what paths should be used

to route between sources and destinations?

(Traffic engineering)

• We ask:

Can these control loops “constructively interfere”

with each other?

3

Some possible schemes

[Random+SP]

CDN: random server selection

TE: shortest path

[Disjoint]

CDN: minimize server

response time

TE: minimize max link load

[Ideal]

CDN + TE: Joint selection of

optimal (path, server) pair

Simple but suboptimal

Complex but optimal

4

A first experiment

Our conjecture: “Ideal should be much better than

the others.”

Aster*x: We implemented ideal load balancing in

the network using OpenFlow.

The following demo illustrates this system:

http://yuba.stanford.edu/~nikhilh/Asterix-embed.mp4

5

Outline

The experiment suggests Ideal is signficantly better

than Random+SP.

Is this “generally” true?

Is it also true when we compare to Disjoint?

We’ll discuss these questions and close with

open questions for the future.

6

Random+SP

Client

Server 1

Server 2

Randomly choose a server…

7

Random+SP

Client

Server 1

Server 2

Randomly choose a server…

8

Random+SP

Client

Server 1

Server 2

…then route on shortest path

to that server.

9

Random+SP

Client

Server 1

Server 2

…then route on shortest path

to that server.

10

Disjoint

Divide server response

time into:

Retrieve: Time to fetch

first byte

Deliver: Time to complete

streaming of request

Compute using moving

averages.

Server 1

Server 2

Retrieve: 10ms

Deliver: 100ms

Retrieve: 50ms

Deliver: 90ms

11

Disjoint

Server 1

Server 2

Retrieve: 10ms

Deliver: 100ms

Retrieve: 50ms

Deliver: 90ms

Client

First choose server

with min total latency…

12

Disjoint

Server 1

Server 2

Retrieve: 10ms

Deliver: 100ms

Retrieve: 50ms

Deliver: 90ms

Client

…then choose path to that

server with max bottleneck bandwidth.

(This is a form of traffic engineering.)

13

Disjoint

Server 1

Server 2

Retrieve: 10ms

Deliver: 100ms

Retrieve: 50ms

Deliver: 90ms

Client

Bottleneck BW: 1 Mbps

Bottleneck BW: 5 Mbps

…then choose path to that

server with max bottleneck bandwidth.

14

Disjoint

Server 1

Server 2

Retrieve: 10ms

Deliver: 100ms

Retrieve: 50ms

Deliver: 90ms

Client

Bottleneck BW: 1 Mbps

Bottleneck BW: 5 Mbps

…then choose path to that

server with max bottleneck bandwidth.

15

Ideal

Server 1

Server 2

Retrieve: 10ms

Deliver: 100ms

Retrieve: 50ms

Deliver: 90ms

Client

Bottleneck BW: 1 Mbps

Bottleneck BW: 5 Mbps

Choose (server,path pair) that

gives lowest latency.

Bottleneck BW: 10 Mbps

16

Ideal

Server 1

Server 2

Retrieve: 10ms

Retrieve: 50ms

Client

Bottleneck BW: 1 Mbps

Bottleneck BW: 5 Mbps

Important point:

Latency = retrieve time + path latency

Bottleneck BW: 10 Mbps

17

Ideal

Server 1

Server 2

Retrieve: 10ms

Retrieve: 50ms

Client

Bottleneck BW: 1 Mbps

Bottleneck BW: 5 Mbps

E.g.: for 1 Mbit request choose Server 2

(150 ms) instead of Server 1 (210 ms).

Bottleneck BW: 10 Mbps

18

Testing methodology

• We use an emulation environment designed

in-house: MiniNet-RT

• Two types of networks:

1) BRITE (randomly generated) 40-node topologies

(meant to “simulate” AS topologies)

2) CAIDA 20-50 node topologies

(actual intra-AS router-level topologies)

• All links fixed at 10Mbps

• Randomly place 1-3 clients, 5-20 servers

• 10 requests/sec, 1MB/request

19

Random+SP vs. Ideal

Random+SP achieves 50% of performance of Ideal

in 50% (BRITE) to 85% (CAIDA) of topologies

 0.1

 1

 10

 100

 0.6 0.7 0.8 0.9 1

La
te

nc
y

w
ith

 S
ho

rt
es

t-
pa

th
 (

se
c)

Latency with Ideal (sec)

 0.1

 1

 10

 100

 0.6 0.7 0.8 0.9 1

La
te

nc
y

w
ith

 S
ho

rt
es

t-
pa

th
 (

se
c)

Latency with Ideal (sec)

BRITE (2000 networks) CAIDA (1000 networks)

20

Disjoint vs. Ideal

Disjoint achieves 98% of performance of Ideal in

over 90% of BRITE and CAIDA topologies!

BRITE (2000 networks) CAIDA (1000 networks)

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.7 0.8 0.9 1

La
te

nc
y

w
ith

 D
is

jo
in

t-
T

E
 (

se
c)

Latency with Ideal (sec)

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.7 0.8 0.9 1

La
te

nc
y

w
ith

 D
is

jo
in

t-
T

E
 (

se
c)

Latency with Ideal (sec)

21

Main observations

• Random+SP is bad, but not as bad as we may

have initially thought (especially on real

topologies).

Question: Are networks designed to make this so?

• Disjoint performs almost as well as Ideal, despite

decoupling of traffic engineering and server

selection.

Question: Why?

22

Disjoint vs. Ideal

Recall that in disjoint:

• Servers chosen based on minimum latency =

retrieve time + deliver time.

• Paths chosen based on maximum bottleneck

bandwidth.

Both push the system in the same direction:

servers with minimum latency eventually prove to

be those with higher bottleneck bandwidth.

(We observe this empirically and

justify it theoretically.)

23

Concluding questions

We want to know what you observe.

In real networks, performance results from the

interaction of design and operation.

If you do observe adverse interactions of TE and

server selection, is it poor operation or poor

design?

If not, is it intelligent operation or planned design?

