
Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Language Based Isolation of Untrusted JavaScript

Ankur Taly

Dept. of Computer Science, Stanford University

Joint work with Sergio Maffeis (Imperial College London) and
John C. Mitchell (Stanford University)

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Outline

1 Web 2.0 and the Isolation Problem
Web Mashups
Isolation Problem

2 Existing Sandboxing Approaches
FBJS
ADSafe
Attacks on FBJS and ADSafe

3 Previous Research
Formal Semantics of JavaScript
Sub-language JB

4 Solving the Isolation Problem
Formal Definition
Achieving Host Isolation
Achieving Inter-Component Isolation
Authority-Safety property

5 Conclusions and Future Work
Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Web 2.0

All about mixing and merging content (data and code) from
multiple content providers in the users browser, to provide
high-value applications known as mashups

Terminology:

Individual contents being mixed - Components.
Content Providers - Principals.
Publisher of the mashup- Host.

Execution environment- Web Browser.

Web page (DOM) - Shared resource.

Most common language for mashups- JavaScript.

Examples:

Basic mashups: Any web page with advertisements, iGoogle.
More complex mashups: Yelp, Yahoo Newsglobe ...

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Example: Basic Mashup (Advertisements)

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Example: Complex Mashup (Yelp)

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Security Issue: Attack Host

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Security Issue: Attack other components

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Security Issues

Each principal owns part of the resources and has integrity
and confidentiality constraints over them.

Yelp restrictions: Google map scripts should not tamper with
search results.
Google Map restrictions: Yelp code should not re-define any
functions defined by google maps.

Mashups should be designed such that the interests of all
principals, including the host are protected.

High risk associated: Credit card fraud, identity theft, loss of
sensitive information

Cannot afford to miss a single edge case- Need a definitive
proof of correctness.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Our Model: Basic Mashups

Basic JavaScript mashup with non-interacting components.

Two trust levels: trusted and untrusted.

Untrusted components are sequentially composed and placed
in a trusted context.

Pages with advertisements, iGoogle, Facebook Apps.

We consider JavaScript sandboxing as opposed to Iframes.

Iframes are restrictive, less control over contents of the frame.
Expensive to expose a library to Iframed code.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Design

Isolation enforced statically at the server.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Isolation Problem

Isolation Problem

Design isolation mechanisms for untrusted components, so that
they cannot access security critical resources belonging to the host
and also other untrusted components.

Split the Isolation Property.
1 Host Isolation

Example: Untrusted component should not read
document.cookie or write to window.location.
Some existing approaches: ADSafe, FBJS, Caja.

2 Inter-Component Isolation

One untrusted component should not write to the variables
defined by another untrusted component.
Isolation between ads or two untrusted FBJS applications.
Tricky! - FBJS, ADsafe and our earlier attempts fail.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

A bit about JavaScript

History :

Developed by Brendan Eich at Netscape.
Standardized for Browser Compatability : ECMAScript 262-
edition 3

First class functions, Prototype based language, re-definable
object properties.

Scope Objects/Stack frames can be first class JavaScript
objects: Variable names ⇔ Property names.

Implicit type conversions which can trigger user code.

var y = ”a”; var x = {valueOf: function(){ return y;}}
x = x + 10;
js> ”a10”

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Quick Case study: Facebook FBJS

Basics:

Facebook apps are either Iframed or integrated. We are
interested in integrated apps.
Integrated FaceBook applications are written in FBML/FBJS:
Facebook subsets of HTML and JavaScript.
FBJS is served from Facebook, after filtering and rewriting.
Facebook libraries mediate access to the DOM (Wrapping).

Security goals:

No direct access to the DOM.
No tampering with the execution environment
No tampering with Facebook libraries.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Isolation Approach

Filtering:

Blacklist security-critical variable names and disallow them.

No eval, Function,

Rewriting:

this −→ ref(this).

ref (x) = x if x 6= window else ref (x) = null .

e1[e2] −→ e1[idx(e2)].

idx(e) returns error if e evaluates to a black-listed property
name and behaves as identity otherwise.

Wrapping: Facebook provides various wrapped DOM functions to
provide controlled access to the DOM.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Quick Casestudy: Yahoo! ADsafe (Douglas Crockford)

Basics:

A safe subset of JavaScript to be used by untrusted ad code
not placed in an Iframe.
Hosting page first places the ADSafe library (adsafe.js) on its
page.
Untrusted ad code must be written in an ADSafe compliant
manner. Tool for checking compliance: JSLint.
All interaction with the trusted code is mediated by the
ADSafe library.

Security Goals:

No direct access to DOM.
No tampering with the execution environment
No tampering with ADsafe libraries.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Isolation Approach

Design

<script>
”use strict”;
ADSAFE.go(”WIDGETNAME ”, function (dom) { // Untrusted Code});
</script>

Basic Restrictions
No this, with, e[e], global variables,
Banned variables:
arguments, callee, caller, constructor, eval, prototype....
Some functionality restored via ’ADSAFE’ object (provided by
the library).

ADSAFE.get(o,p): Access property p of object o.
ADSAFE.create(o): Create object that inherits from o.
. . .

Indirect access to DOM provided by the dom parameter.Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Recent FBJS attack

Attack- Get hold of window object !

var f = function(){};
f.bind.apply =

(function(old){return function(x,y){
var getWindow = y[1].setReplay;
getWindow(0).alert(”Hacked!”);
return old(x,y)}

})(f.bind.apply)}

JavaScript offers two ways to call a function: o.f (v) or
f .apply(o, v).

While using f .apply(o, v), we need to make sure that the
apply method is non-malicious !

Reported to Facebook.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Recent ADSafe attack

Attack - Run arbitrary script !

var o = {toString:function(){o.toString =
function(){return ”script”};

return ”div”}};
dom.append(dom.tag(o).append(dom.text(”alert(’Hacked!’)”));

dom.tag expects a tag-name string, and creates a node if the
tag-name is allowed.

Confuse dom.tag by passing it an object that returns “div”
when converted to string first time and “script” the second
time.

Reported to Doug Crockford.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Conclusion

All attacks found till date are edge cases which the
sandboxing technique misses.

Sandbox designer does not account for all possible future
states !

We need a systematic design followed by a proof of
correctness to make sure that we have covered all cases.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Outline

1 Web 2.0 and the Isolation Problem
Web Mashups
Isolation Problem

2 Existing Sandboxing Approaches
FBJS
ADSafe
Attacks on FBJS and ADSafe

3 Previous Research
Formal Semantics of JavaScript
Sub-language JB

4 Solving the Isolation Problem
Formal Definition
Achieving Host Isolation
Achieving Inter-Component Isolation
Authority-Safety property

5 Conclusions and Future Work
Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Our previous research: Provably correct sandboxing

Two main contributions:

1 Formal Semantics of JavaScript
2 Sub-language JB and source-source rewriting EnfB, for

enforcing a black-list B.

Property: No rewritten program can access properties from the
black-list B or get hold of the global object.
Rigorous proof of correctness.
As expressive as FBJS .
Developed in a series of papers - CSF’09, W2SP’09,
ESORICS’09.

Rest of this talk:

Review 1 and 2

Analyze isolation goals that can and cannot be achieved using
the sandbox JB, EnfB.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Our previous research: Provably correct sandboxing

Two main contributions:

1 Formal Semantics of JavaScript
2 Sub-language JB and source-source rewriting EnfB, for

enforcing a black-list B.

Property: No rewritten program can access properties from the
black-list B or get hold of the global object.
Rigorous proof of correctness.
As expressive as FBJS .
Developed in a series of papers - CSF’09, W2SP’09,
ESORICS’09.

Rest of this talk:

Review 1 and 2

Analyze isolation goals that can and cannot be achieved using
the sandbox JB, EnfB.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Formal Semantics of JavaScript

Formalized all of ECMA-262-3rd edition (JSecma262).

Small step style operational semantics.

Meaning of a program ⇔ sequence of actions that are taken
during its execution.
Specify sequence of actions as transitions of an Abstract
machine

Developed formal semantics as basis for proofs (APLAS’08)

Very long (70 pages of ascii).
DOM is just treated as a library object.
We experimented with available browsers and shells
Defining an operational semantics for a real programming
language is hard: sheer size and JavaScript peculiarities.

We are in the process of migrating to ES5 but current semantics is
adequate for analyzing ADsafe and FBJS .

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

A glimpse of the rules

State

Program state is represented as a triple 〈H, l , t〉.
H: Denotes the Heap, mapping from the set of locations(L)
to objects. H0 is used to denote the initial heap.

Objects are maps from property names (P) to values (v).

l : Location of the current scope object (or current activation
record).

t: Term being evaluated.

General form of a rule 〈premise〉
H1,l1,t1→H2,l2,t2

.

We use H0 to denote the initial JavaScript heap and lG to
denote the global object.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Language JB, Rewriting EnfB

Goal: Prevent access to property names from blacklist B and
global object.
JavaScript Facts:

Two kinds of Property Access:

Explicit: x, e1.p, e1[e2]
Implicit: toString, valueOf
We found the complete list -Pnat .

Ways to access global object:

this
Calling native methods of the form function()(... return this).

Dynamic Code Generation: eval, Function, constructor.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Design

Controlling e.x and x.

Filter 1

Filter all terms containing an identifier or property name from
B ∪ {eval , Function, constructor} and also any $-prefixed
property name.

Controlling e1[e2].

Approach: Rewrite e1[e2] to e1[IDX(e2)]

Need to avoid “confused IDX” attacks.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Design

Our IDX function.

Init 1

var $String = String;
var $BL = {p1:true,...,pn:true, eval:true,...,$:true,...}

Rewrite 1

Rewrite every occurrence of e1[e2] by e1[IDX(e2)]

IDX(e2) = ($=e2,toString:function()return ($=$String($),CHECK $))

CHECK $ = ($BL[$] ? ”bad”:

($ == ”constructor” ? ”bad”: $== ”eval” ? ”bad”:

($ == ”Function” ? ”bad”:($[0] == ”$” ? ”bad”:$)))))

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Preventing access to global object

Taking care of this: Rewrite this with suitable check.

Rewrite 1

Rewrite every occurrence of this to NOGLOBALTHIS.
NOGLOBALTHIS = (this==$g?null;this)

Save global object in $g.

Init 1

var $g = this;

Other ways of getting hold of global object:

Method valueOf of Object.prototype and sort, concat, reverse of
Array.prototype can potentially return pointer to global object.

Define wrappers with NOGLOBAL check on return value.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Wrapping native methods

Init 2 (Wrapper)

$OPvalueOf = Object.prototype.valueOf;
$OPvalueOf.call = Function.prototype.call;
Object.prototype.valueOf =
function(){var $= $OPvalueOf.call(this); return ($==$g?null:$)}

Similarly Init3, 4, 5 for sort, concat, reverse.

A copy of original call method is saved, motivated by another
FBJS attack.

Wrapping eval and Function: doable, but need to define a
JavaScript expression that parses, filters and rewrites strings
meant to represent JavaScript terms. (constructor will be the
only thing left then!)

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Result

Define JB as JavaScript with Filter 1 applied.

Define EnfB as the composition of functions Rewrite 1,
Rewrite 2.

Define Hwrap as the heap obtained after executing Init 1 and
Init 2 on the initial JavaScript heap H0.

Let lG be the global object.

Theorem

For all user terms t ∈ JB, the following holds for the reduction
trace of EnfB(t) starting from Hwrap, lG

1 Blacklist: No property from the black-list B is accessed
(provided B ∩ Pnat = ∅).

2 No Global: Final value returned is never the global object.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Outline

1 Web 2.0 and the Isolation Problem
Web Mashups
Isolation Problem

2 Existing Sandboxing Approaches
FBJS
ADSafe
Attacks on FBJS and ADSafe

3 Previous Research
Formal Semantics of JavaScript
Sub-language JB

4 Solving the Isolation Problem
Formal Definition
Achieving Host Isolation
Achieving Inter-Component Isolation
Authority-Safety property

5 Conclusions and Future Work
Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Isolation problem

Let blacklist Bhost denote critical elements of hosting page .
Let t1, . . . , tn be programs running in components 1, . . . , n.

Isolation Problem

Define an initial environment Hmash, lmash and an enforcement
technique for each component such that:

1 Host Isolation: For all i , reduction trace of component i
starting from Hi , li does not access any property from Bhost .

2 Inter-Component Isolation: For all i , j , i < j , reduction of
component i does not write to any heap location that
component j reads from.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Isolation technique

We first evaluate the following isolation technique:

Initial environment Hwrap, lG .

Enforcement technique Enfi for component (ti , idi):
1 Check containment in JB
2 Rewrite program ti to EnfB(ti).
3 Rewrite every variable x in EnfB(ti) to idix .

Intuitively this seems correct.

1 and 2 should give host isolation.
3 should give inter-component isolation.

Lets be systematic !

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Host Isolation

From the correctness theorem for sandbox JB, EnfB we have:

Reduction trace of Enfi (ti) starting from Hwrap, lG will never
access any property in Bhost .
But what about the trace starting from Hk , lk ?
We do not know Hk , lk in advance !

Fortunately, we can formally show that the property holds for
starting heap-scope Hi , li , provided all other components are
also enforced.

Therefore the isolation technique is sufficient for Host
Isolation.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Host Isolation

From the correctness theorem for sandbox JB, EnfB we have:

Reduction trace of Enfi (ti) starting from Hwrap, lG will never
access any property in Bhost .
But what about the trace starting from Hk , lk ?
We do not know Hk , lk in advance !

Fortunately, we can formally show that the property holds for
starting heap-scope Hi , li , provided all other components are
also enforced.

Therefore the isolation technique is sufficient for Host
Isolation.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Inter-Component Isolation

Intuition:

Global object is the common object shared between
components.

No Global property ensures that no component can get a
handle to the global object.

Blocks access to global object via e.p and e1[e2].

Variable renaming separates namespace.

Isolates access to global object via x.

Can we conclude each component will access different portion of
the global object ?
No, what if component j can reach a function defined by
component i which has idi prefixed variables !

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Inter-Component Isolation

Intuition:

Global object is the common object shared between
components.

No Global property ensures that no component can get a
handle to the global object.

Blocks access to global object via e.p and e1[e2].

Variable renaming separates namespace.

Isolates access to global object via x.

Can we conclude each component will access different portion of
the global object ?
No, what if component j can reach a function defined by
component i which has idi prefixed variables !

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Communication via native objects

Attack

Component i : f.toString.channel = function()(a = 1)
Component j : f.toString.channel()

f.toString and f.toString will point to the common location
Function.prototype.toString even after namespace separation.

Components i and j can use this location as a communication
channel.

We found a real FBJS attack where one app can (maliciously)
change the meaning of another app.

There are other communication channels as well:
Array.prototype.push and Array.prototype.pop.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

What has gone wrong ?

Our sandboxing technique restricts execution starting from
Hwrap, lG but does not provide any guarantees for Hk , lk

Execution of one component can transform the heap such
that another component can break out of the sandbox !

We are caught in the problem of not being able to account for
all future states !

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Concept: Authority

Authority (Auth(H, l , t))

Authority of a term t for a given heap-scope H, l is some
over-approximation of the set of all possible heap actions that can
be performed during the reduction of the term.

Inter-component isolation will hold if for all i , j , i < j , we can
ensure that
Auth(Hi , li , ti) does not overlap Auth(Hj , lj , tj)

But this check is not useful as we don’t know Hi , li !

We can at most know authority of each component for the
initial heap-scope.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Authority Safe language

Authority Safety

A language is said to be authority safe if there exists an authority
map Auth such that

1 Only Connectivity begets Connectivity The execution of a
term ti starting from H, l can only affect the authority of a
term tj if
Auth(H, l , ti) overlaps with Auth(H, l , tj)

2 No Authority Amplification The execution of a term ti
starting from H, l can at most increase the authority of
another term tj by Auth(H, l , ti).

Thus non-overlapping authorities ensure no communication is
possible.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Result

Authority Isolation

Given an authority safe language, authority isolation holds for
terms t1, . . . , tn for heap scope H, l if for all i , j , i 6= j
Auth(H, l , ti) does not overlap with Auth(H, l , tj)

Theorem

Authority Isolation =⇒ Inter-Component Isolation.

Authority safety saves us from worrying about the
intermediate heap-scopes.

Reduces the problem to defining an appropriate
source-to-source rewriting so that initial authorities are
non-overlapping.

Justifies one time source-to-source rewriting approach.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Solving the mashup isolation problem

We restrict the language JB and a derive an authority-safe
subset Jsafe .

Make native object properties read-only.
Wrap native functions which can act as implicit
communication channels.
. . ..

We define an initial heap-scope H, l and enforcement
functions Enf1, . . . , Enfn such that for all i , j , i 6= j ,
Auth(H, l , ti) does not overlap with Auth(H, l , tj)

Details and rigorous proof of correctness is provided in the paper.

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Insight

Sandbox designers have a mental model of the what code
placed in the sandbox can and cannot do - Anticipated
Authority

Sandboxes are calibrated so that anticipated authorities are
isolated.

Reason things break:
Anticipated Authority < True Authority

How do we ensure that the mental model captures true
authority ?

Prove Authority Safety !

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Insight

Sandbox designers have a mental model of the what code
placed in the sandbox can and cannot do - Anticipated
Authority

Sandboxes are calibrated so that anticipated authorities are
isolated.

Reason things break:
Anticipated Authority < True Authority

How do we ensure that the mental model captures true
authority ?

Prove Authority Safety !

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Achieving authority-isolation in general

Object Capabilities

Capabilities can be viewed as small bags of authority.

A pointer can be a capability with set of all reachable locations
being its authority.

The authority of a term is the union of authority arising all
capabilities it possesses.

Authority isolation can be achieved by appropriately
distributing capabilities to the various components such that
no two components have overlapping authority.

Approach used by Google Caja.

This is explained very formally in our Oakland 2010 paper.
Object Capabilities and Isolation of Untrusted Web
Applications

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Conclusions and Future Work

Conclusions:

Building correct JavaScript sandboxing mechanism for host
isolation is tricky !
Sandboxes can protect the host page but may not work for
inter-component isolation.
Object Capabilities seem like a promising approach for
inter-component isolation.

Ongoing work:

Formalized the notion of Object-capability-safety and
Authority-safety.
First cut at a proof of concept for Google Caja.

Future work:

We plan to write the JavaScript semantics in machine readable
format so that the proofs can be automated.
Formalize the concept of Defensive consistency and its
connection with Object-capability-safety .

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Conclusions and Future Work

Conclusions:

Building correct JavaScript sandboxing mechanism for host
isolation is tricky !
Sandboxes can protect the host page but may not work for
inter-component isolation.
Object Capabilities seem like a promising approach for
inter-component isolation.

Ongoing work:

Formalized the notion of Object-capability-safety and
Authority-safety.
First cut at a proof of concept for Google Caja.

Future work:

We plan to write the JavaScript semantics in machine readable
format so that the proofs can be automated.
Formalize the concept of Defensive consistency and its
connection with Object-capability-safety .

Ankur Taly Language Based Isolation of Untrusted JavaScript

Web 2.0 and the Isolation Problem Existing Sandboxing Approaches Previous Research Solving the Isolation Problem Conclusions and Future Work

Thank You !

Ankur Taly Language Based Isolation of Untrusted JavaScript

	Web 2.0 and the Isolation Problem
	Web Mashups
	Isolation Problem

	Existing Sandboxing Approaches
	FBJS
	ADSafe
	Attacks on FBJS and ADSafe

	Previous Research
	Formal Semantics of JavaScript
	Sub-language JB

	Solving the Isolation Problem
	Formal Definition
	Achieving Host Isolation
	Achieving Inter-Component Isolation
	Authority-Safety property

	Conclusions and Future Work

