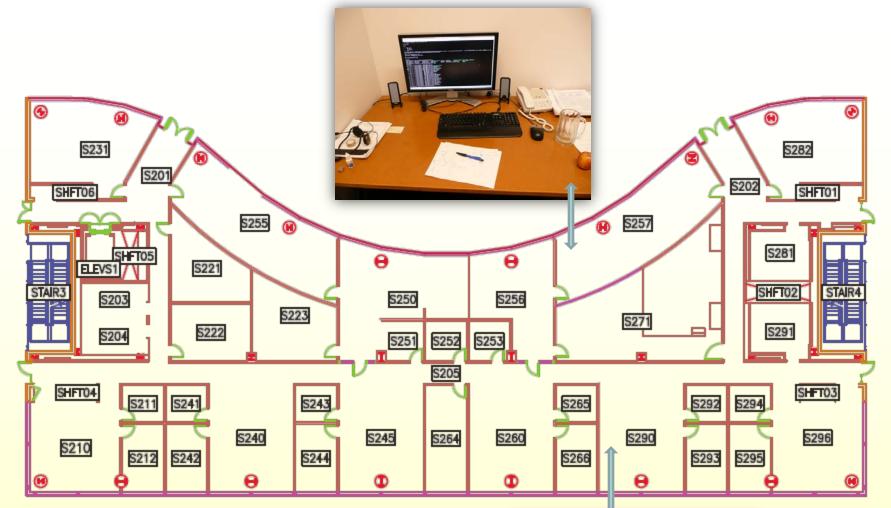
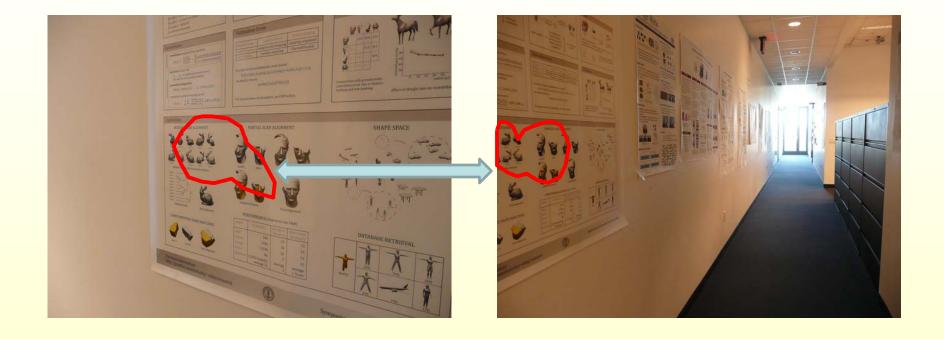
Image Webs: Computing and Exploiting Connectivity in Image Collections

Leonidas Guibas Computer Science Dept. Stanford University

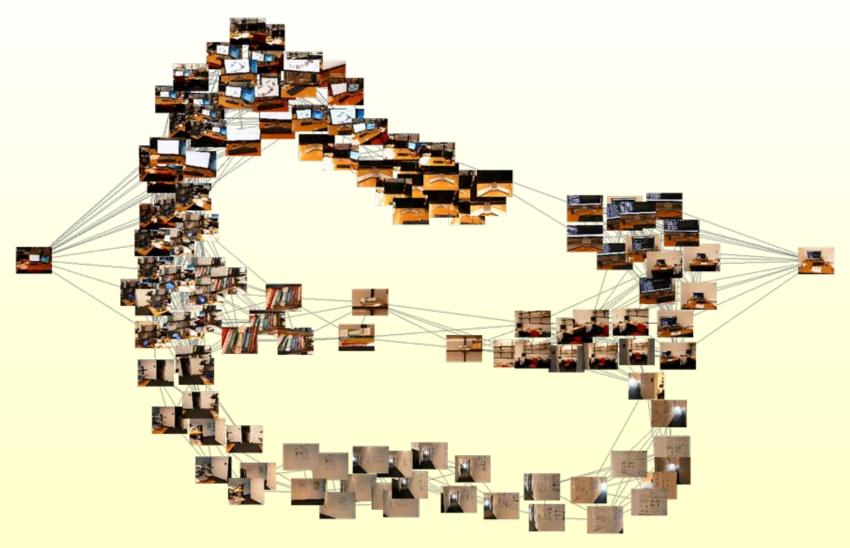


LGORITHMS

Image Match Links



Paths Through Image Collections



Path Homotopy Classes

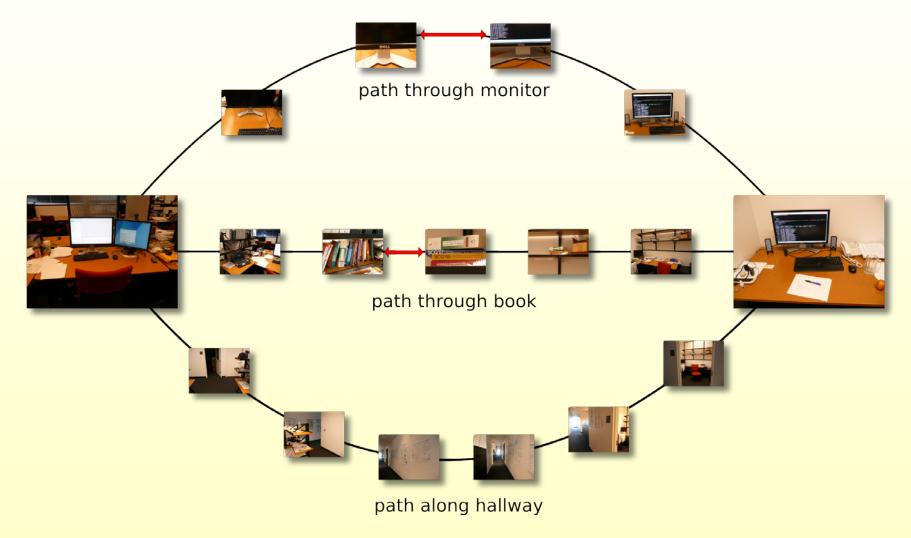
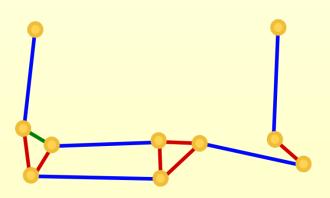
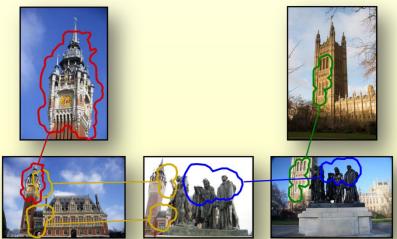


Image Webs

- The idea of Image Webs is to interlink images through a variety of link types, based on both content and image metadata (GPS, time, annotations)
- The same way that the WWW of documents has proved useful, the hope is that interlinked webs of signals will also be valuable for propagating, extracting, and filtering information – and the web types two can crosslink and cross-fertilize





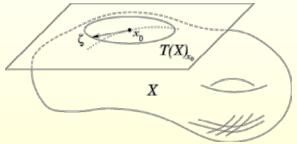
Global Connectivity

- Understand the local and global structure of image webs, aiming at a softer, more topological understanding
- Develop efficient Web construction algorithms
- Explore applications (image browsing, annotation transfer, social networks, etc.)

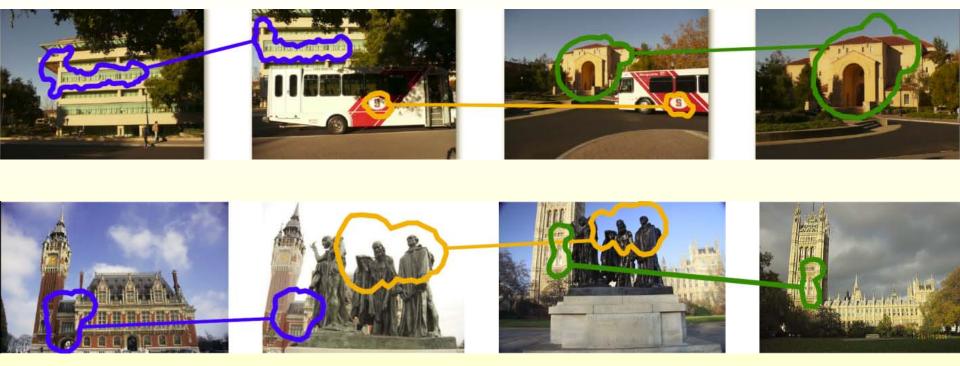
[Zheng et. al., CVPR 2009]

The Space of All Images

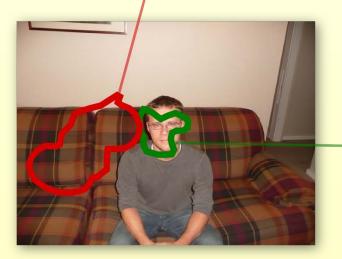
- If we frieze time, the local structure of the space of images is well understood: it that of a low dimensional manifold – the manifold of views
- This is also the local structure of an image web based on match links
- But at larger scales the structure is more complex
 - because of moving objects
 - because of repeated similar objects
- For us this is exactly the structure that is of interest

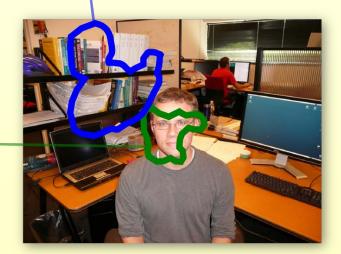


Non-Local Links



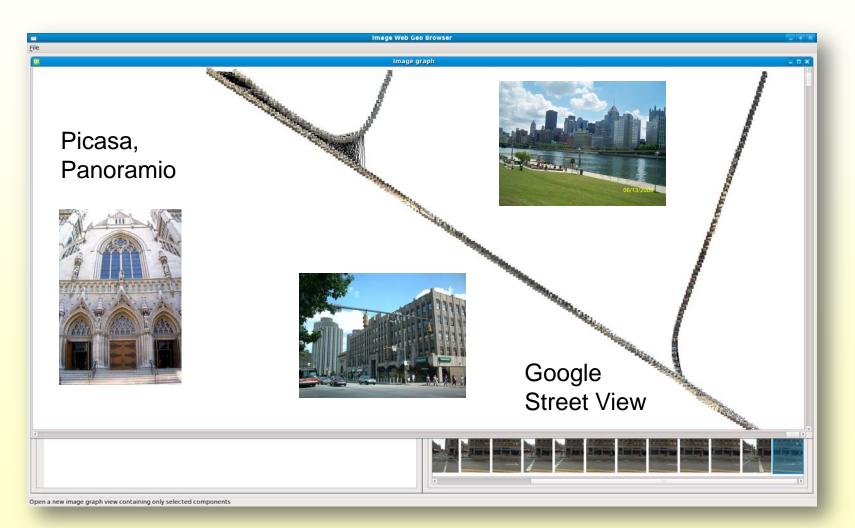
Proximity Through Mobility: Home to Office





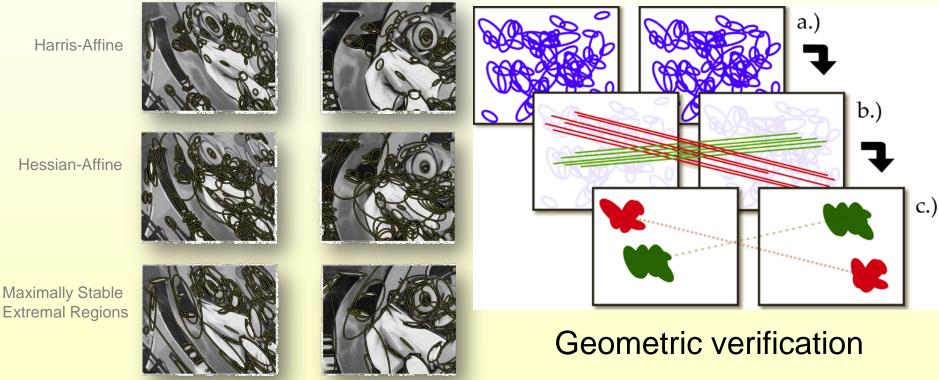
Proximity Through Mobility on the Stanford Campus

Scaffold Webs: Getting Essential Connectivity

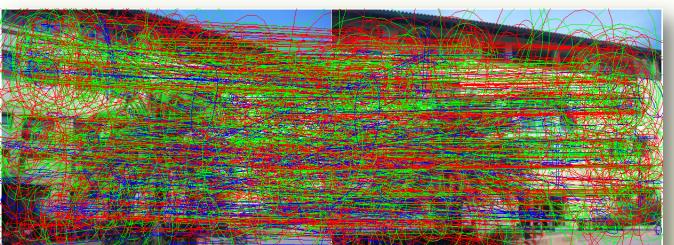


Getting Down to It: Building Image Webs

 Feature Extraction: interest points, associated with a region and summarized by a SIFT descriptor



Getting Rid of False Feature Matches



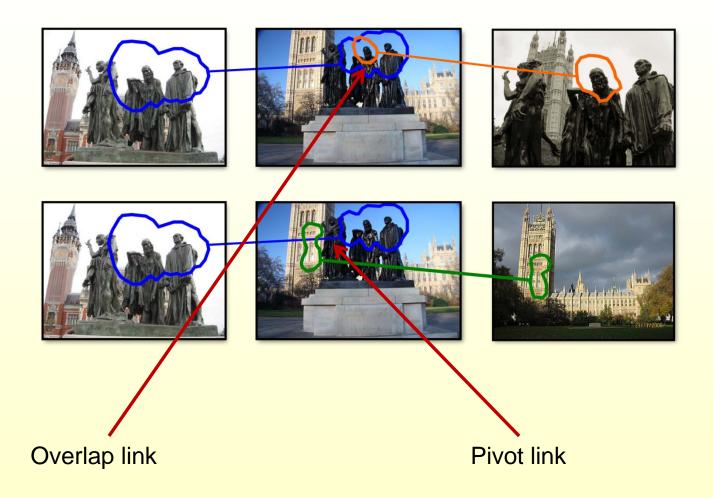
raw feature matches

after geometric verification

Match Links

Match links connect image regions with coherent feature sets Link aliasing: symmetries and repetitions can mislead ...

More Links: Overlap and Pivot



Basic element of a Web is a pair (patch, image)

Links and Their Decorations

Link decoration:

- Match (M)-links
- Overlap (O)-links
- Pivot (P)-links

(quality of match, transform attributes)

(degree of overlap)

(patch distance, visual attributes)

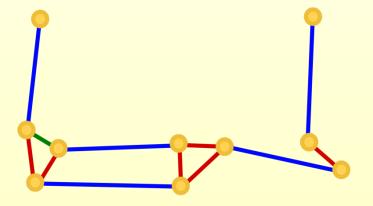
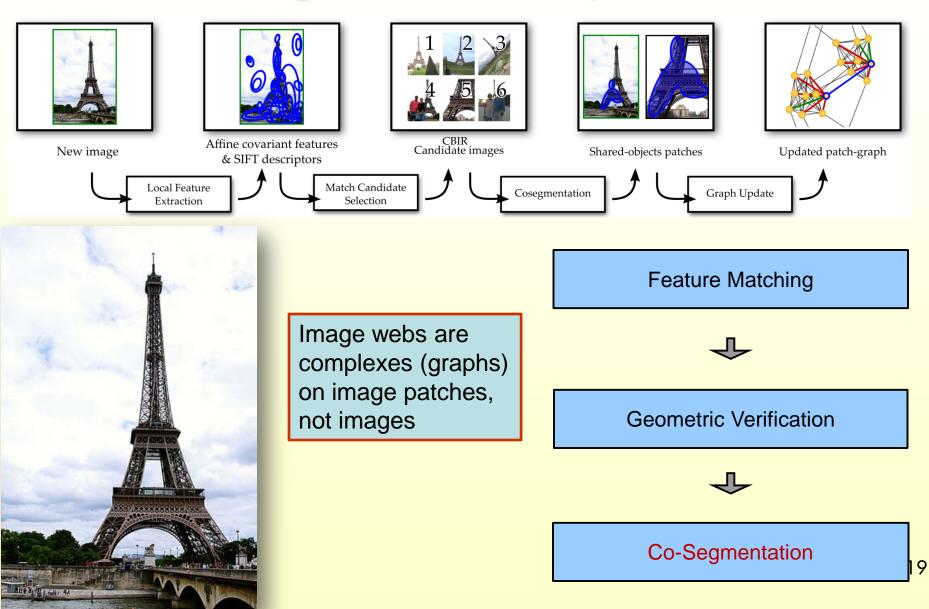
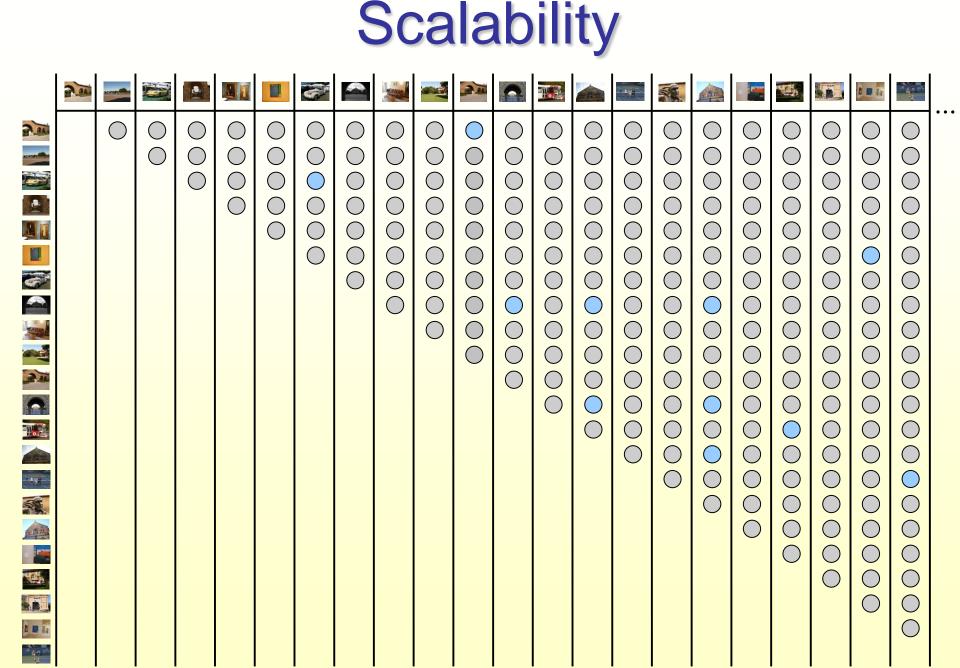


Image Webs Pipeline





Distributed Computation

- Construction pipeline easily distributed on a computer cluster
 - A manager node issues feature extraction, CBIR, and cosegmentation jobs to worker nodes
 - Communication using the Internet Communication Engine (ICE) middleware and a shared file system

Gaining Efficiency: Pruning Pairs by CBIR Filtering

- Content-Based Image Retrieval (CBIR) via "Bag of Words" models:
 - cluster and quantize descriptors into vocabulary trees
 - use document information retrieval type indices

 Used to retrieve "visually similar" images – in our case possible Web neighbors for which match links exist

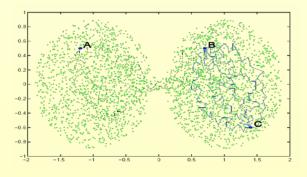
Computation Times (on a Cluster)

- Image matching steps (VGA image size)
 - Feature extraction (~ 4 sec per image)
 - CBIR indexing (~ 30 sec per image)
 - Cosegmentation operation (~ 1.5 sec per image pair)
- Image Web construction times*
 - Car (70 images ~ 1 minute)
 - Art museum (1200 images ~ 52 minutes)
 - Stanford campus (4200 images ~ 3 hours)

*just cosegmentation stage using up to 500 compute nodes

Scaling Up Web Construction

- We want to build Image Webs with millions of images -- and understand how they are connected
- We cannot afford to try cosegmentation on all image pairs
- CBIR is a useful filter, but ...
- Vital connectivity information may reside in sparser areas of the Web



Getting an Unknown Graph to Reveal Itself ...

- Testing for the presence of links is expensive
- Which images pairs should we try to connect?
- We seek a sparser graph which captures the connectivity of the unknown Web
 - On the one hand, the CBIR filter favors image pairs where links are likely to exist
 - But how can we tell is a particular link improves connectivity?
 - What should be our ultimate measure of Web utility?
- Spectral graph theory and harmonic analysis to the rescue

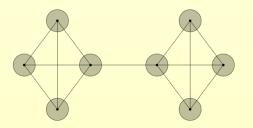
Algebraic Connectivity Measures

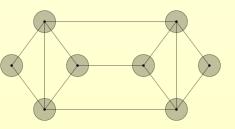
• Connectivity of a graph based on heat diffusion notions

Second smallest eigenvalue of the graph Laplacian

$$L_{i,j} = \begin{cases} d(i) & \text{if } i = j \\ -1 & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$

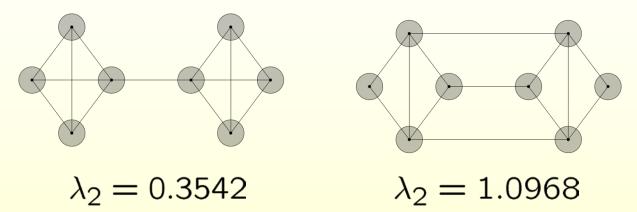
- Smallest eigenvalue of L is always 0 and has a constant eigenvector
- Multiplicity of 0: number of connected components





Algebraic Connectivity

 Connectivity Measure: Second smallest eigenvalue of the graph Laplacian

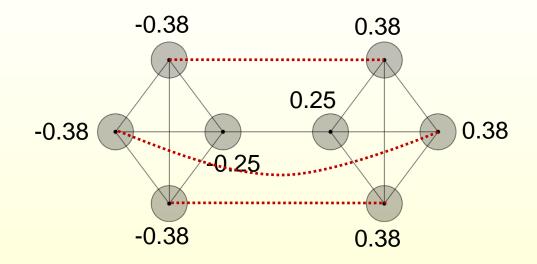


- Related to the diameter D of a graph with n nodes, random walk convergence, diffusion distances, and many other measures of graph connectivity
- The eigenvector corresponding to λ₂ is the Fiedler vector, and is often used to partition the graph

• Objective:

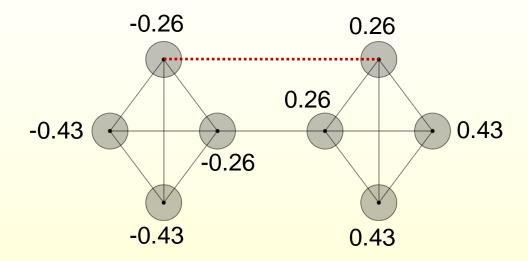
- Build a "well connected" graph in minimal time
- Difficulty:
 - Given a graph, finding the k extra edges which maximally increase algebraic connectivity is NPhard
- Use a greedy strategy:
 - For every potential new connection, test its EdgeRank R – how much it will increase connectivity

Use a strategy from graph cuts



Assign to each node its value in the Fiedler vector
Add an edge (*i*, *j*) to maximize connectivity score:

Practical considerations



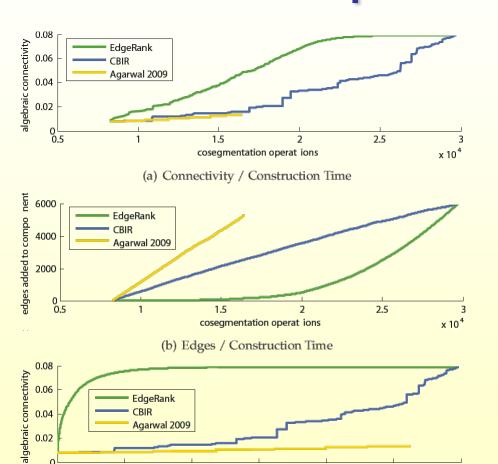
- Update the Fiedler vector after each new edge
- Can use the old estimate as a guess
- Use a *power iteration* to update the Fiedler vector

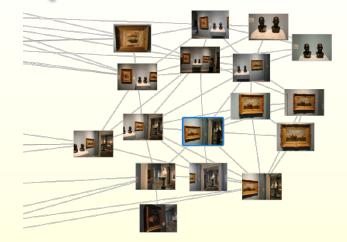
Power Iteration

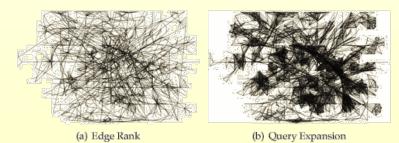
$$u_{i+1} = (2nI - L)u_i$$
$$u_{i+2}(j) = u_{i+1}(j) - \frac{1}{n} \sum_{k=1}^n u_{i+1}(k) \ \forall \ j$$
$$u_{i+3} = \frac{1}{\|u_{i+2}\|} u_{i+2}$$

- Converges to the Fiedler vector
- Convergence is fast if have a good estimate. We don't expect the Fiedler vector to change drastically
- Small overhead: only 1 vector in memory

Algebraic Connectivity Speed-Ups







Agarwal 2009 = query expansion

(c) Connectivity / Edges

edges added to compo nent

Timings on Cluster with 500 Nodes

Collection Name (Source)	Images	Components	Largest	Construction Time (min)		
		(size > 1)	Component	Phase 1	Phase 2	Total
Stanford (Flickr)	193,277	12,505	11,240	173	96	269
Pittsburgh (StreetView)	50,224	23	49,907	7.9	70	78
London (Panoramio)	17,925	902	4,617	7.7	5.9	14
Art Museum (created)	1,257	5	1,217	0.06	0.74	0.8

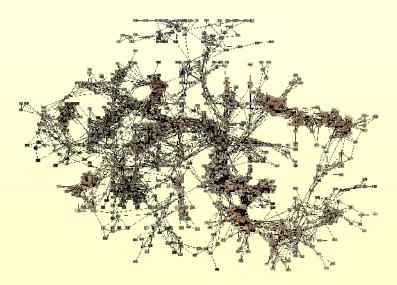
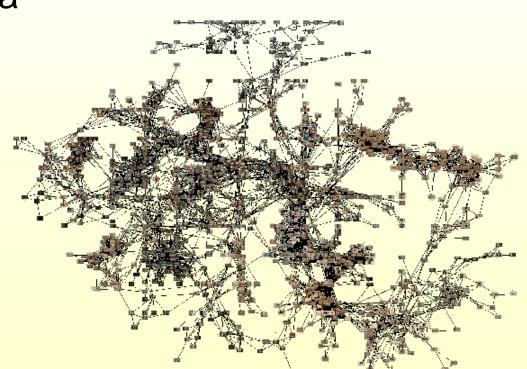
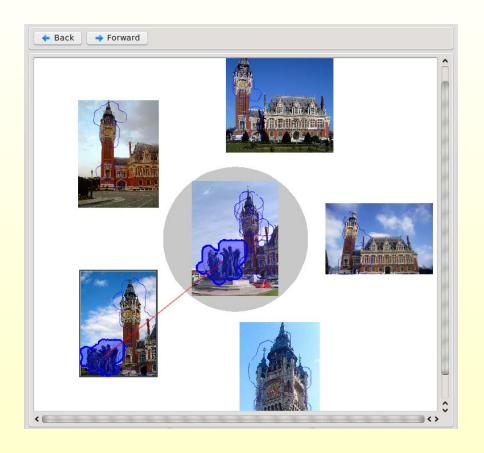


Image Web Applications

- Navigation through a space of images
- Enhanced image search
- Propagation of information through image links

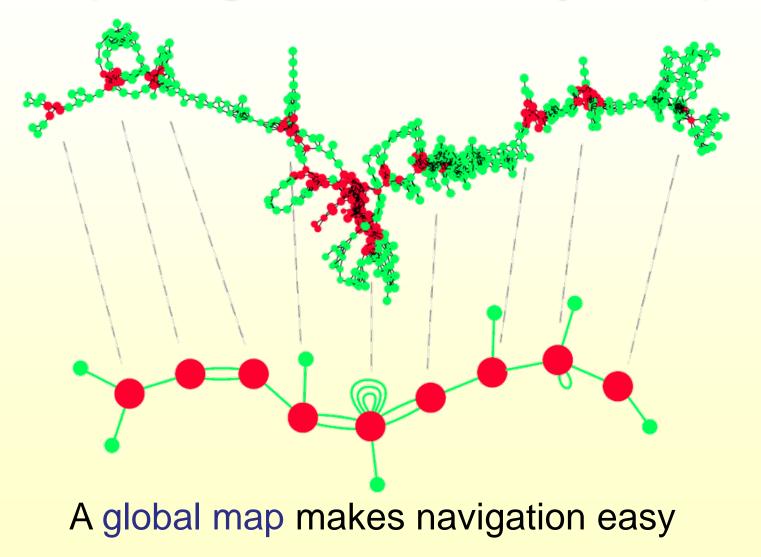


An Image Webs Browser



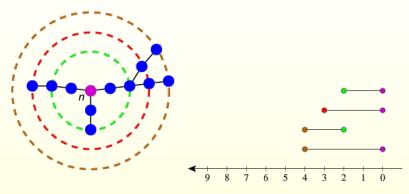
- How can we navigate through large Image Webs effectively?
- How do we mitigate the effects of wrong links?
- How do we extract "persistent" global structure

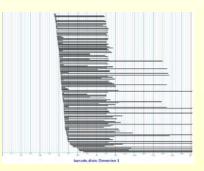
Computing a `Summary Graph'



Persistent Local Homology

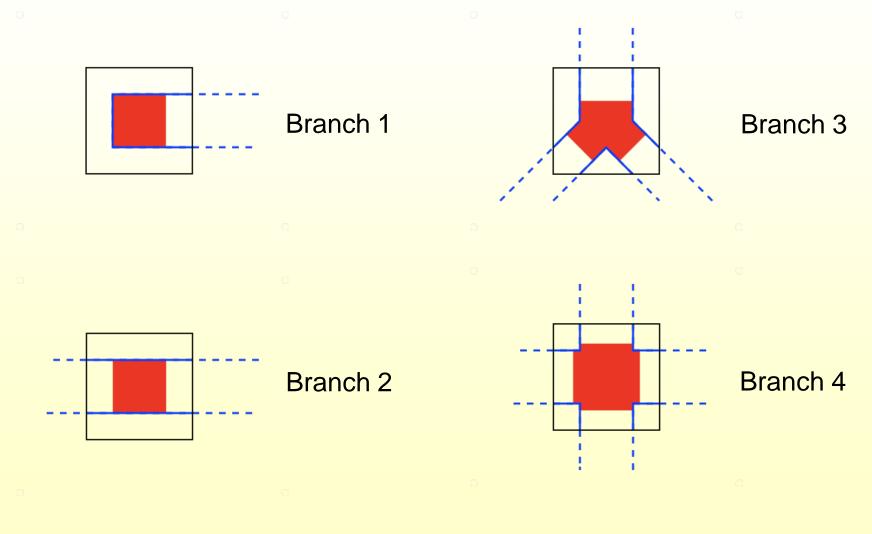
- Image Webs are often stratified spaces because of the acquisition process – understanding the strata structure helps
- Use some algebraic topology: image webs as combinatorial complexes
- Rips-Vietoris complex on images, based on distances coming from the links (affine maps)
- Exploit filtered complexes and persistence ideas



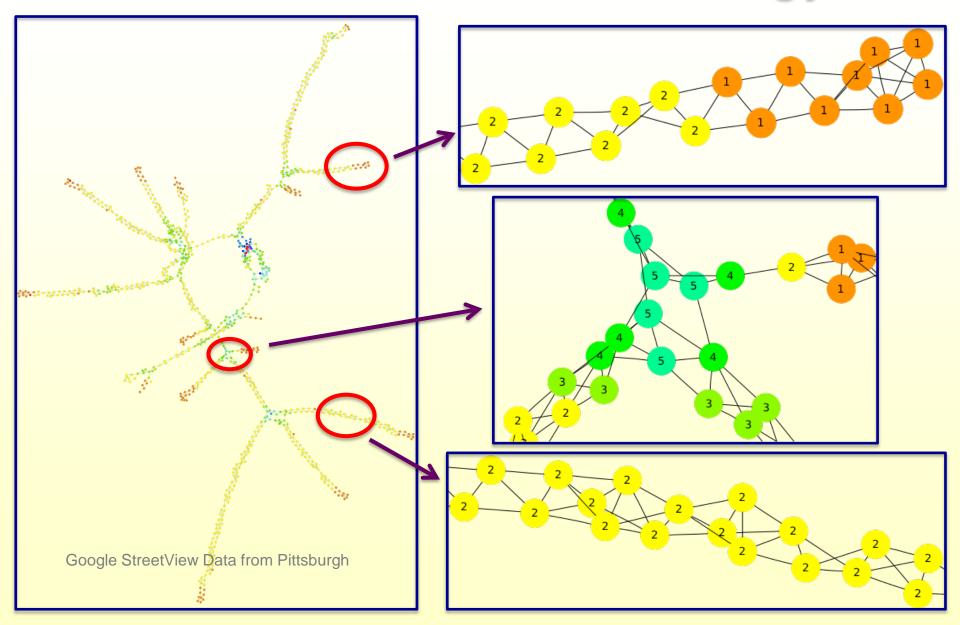


Persistent Local Homology

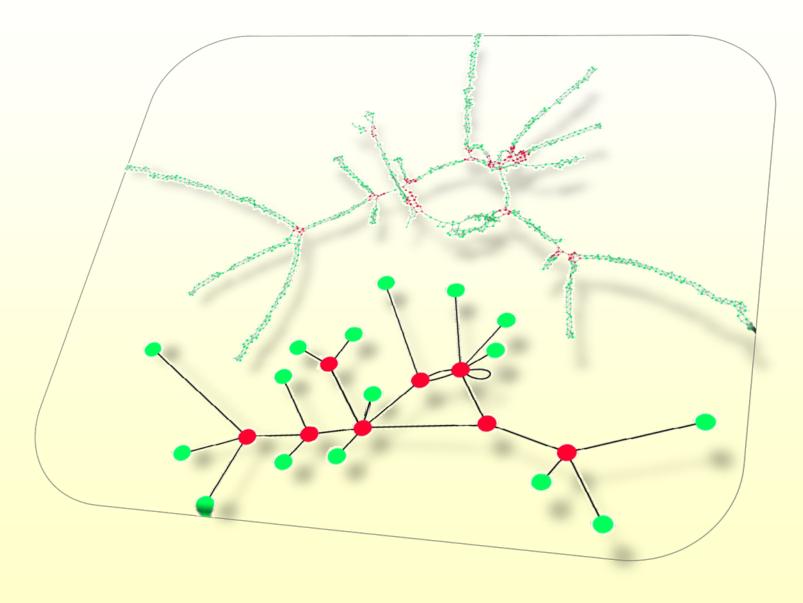
Different types of nodes in an Image Web:



Persistent Local Homology



Summarizing Image Webs

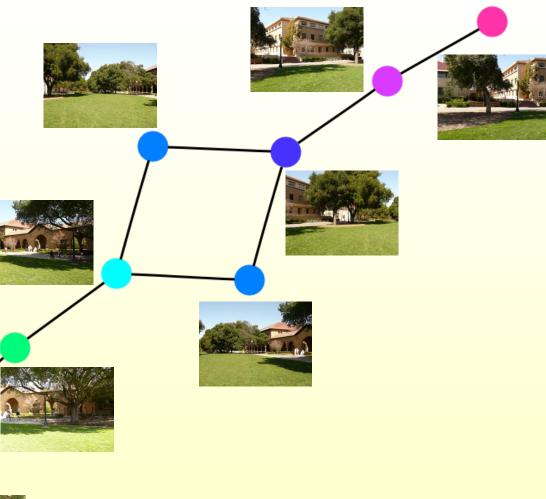


Parametrizing Edges/Loops

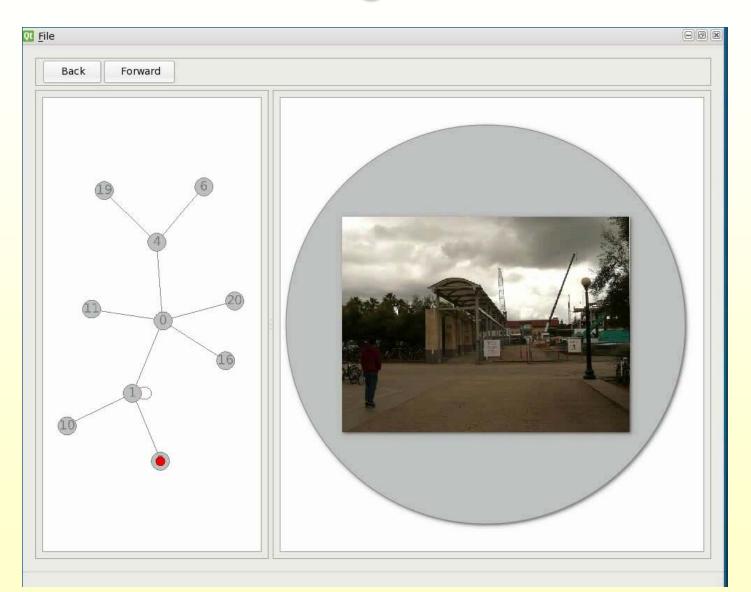
Key Idea: Degree one cohomology group is isomorphic to the set of maps from X to $S^1 = \mathbb{R}/\mathbb{Z}$

 $\mathbf{H}^1(X;\mathbb{Z}) = [X, S^1]$

Goal: Find smoothest circlevalued function θ on Vert(**X**) 'Smoothest' means least variation on the edges



Web Navigation: Video



Information Transfer

- Object models as subwebs: focus and context
- Annotation transfer
- Linking people through their images: face webs
- Mobile webs: photoguided navigation, collaborative exploration

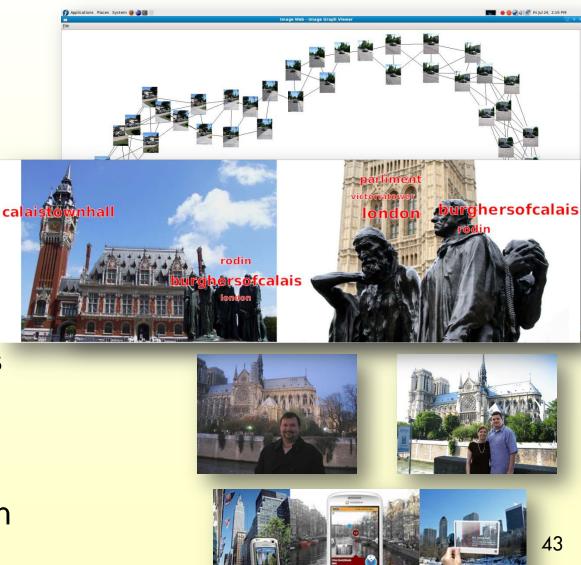


Image Annotation

stanford vacation zurowskifamily

amerika catlovers city goldengatebridge harbor may monterey sanfrancisco santacruz stanforduniversity usa

andreilinde dslr sony sonya700

Tag Cleaning by Simulated ESP Game on an Image Web

10 architecture california **clarkcenter** delete delete2 fav10 fav25 jameshclarkcenter paloalto photowalking photowalking100107 photowalking 10012007 photowalking stanford save save10 save2 save3 save4 save5 save6 save7 save8 save9 southbay stanford **stanforduniversity** superfave unitedstates unitedstatesofamerica usa

clarkcenter lights night stanforduniversity

Clean Tags: clarkcenter stanforduniversity

Auto-Tagging Experiment

- Dataset
 - Flickr search for "Stanford" -> 195,268 images
 - Image Web has 1,132,406 regions
 - Tag cleaning -> 525 clean tags

Auto-Tagging Experiment

Tagging summary

	Provided Tags	Cleaned Tags	Suggested Tags
Number of Images	168,171	13,613	21,179
Percent of Dataset	86%	7.0%	11%

Tagging examples

Successes

Image	Provided	Cleaned	Suggested
	church, stanford	stanford	stanford (1.01) stainedglass (0.04) university (0.03)
	<none></none>	<none></none>	stanford (0.189) california (0.173) university (0.073), stanforduniversity (0.041), hoovertower (0.001)
	stanford	stanford	stanford (1.05), university (0.15), tower (0.14), hoover (0.14), california (0.14), usa (0.13), 2009 (0.13)

Failures

Image	Provided	Cleaned	Suggested
	berkeley, stanford	berkeley, stanford	stanford (1.0357) berkeley (1.0298) university (0.1962) ca (0.1765)
	alcatraz, ghirardeli, goldengate, kipp, pier39, sandiego, sanfrancisco, stanford, streetsofsanfrancisco, students	alcatraz, goldengate, pier39, sanfrancisco, stanford	alcatraz (1.0019) goldengate (1.0019) pier39 (1.0019) sanfrancisco (1.0019) stanford (1.0019)

Auto Tagging Extensions

- Tag cleaning
 - Use graph neighborhood instead of direct matches to generate ESP game rounds

	Method 1: Direct match	Method 2: Neighborhood
Images that play a game	2868	3391
Images that "win" a game	2042	2813
Cleaned tags	130	242

- Tag suggestion
 - Estimate a relevance of a keyword to an image by the relative frequency with which it "wins" in ESP games with that image

Conclusion

- Interlinked images and other signals contain a wealth of information not apparent in any one image or signal alone
- Such signal webs form networks of maps; maps can be used to navigate as well as to transport information, so as to arrive at a global understanding of both the sensed environment and the acquisition process
- The value of these Webs is in the paths induced by the maps between images

Acknowledgements

Joint work with

Kyle Heath

Natasha Gelfand

Maks Ovsjanikov

Dmitriy Morozov

Mridul Aanjenaya

50

and thanks to

National Science Foundation