

Stanford Clean Slate Program

http://cleanslate.stanford.edu

OpenFlow Wireless

Guru Parulkar parulkar@stanford.edu

KK Yap, Nick McKeown, Sachin Katti

Funded by Cisco, Deutsche Telekom, DoCoMo, Ericsson, Google, LightSpeed, MDV, NEC, NSF, Xilinx

Cellular Networks and Internet

- Two phenomenally successful infrastructures
- Smart phones and data starting to dominate
- Lots of action and growth

So what is wrong?

Mobile Network Infrastructure Today

 Many cellular networks visible (5-7 common), many wifi networks visible (10-15 common).

- But not practically available to me – closed infrastructures.
- Seamless mobility impossible

Why can't I use of all the infrastructure around me?

Ideally, in Future Wireless Network Substrate we want

- Simultaneous access to all infrastructure
- Continued connectivity and seamless mobility as I move
- Maximal user choice
- Allow innovation, instead of closing the infrastructure

Ideally we want

Internet has many problems

Plenty of evidence and documentation

Internet's "root cause problem"

It is Closed for Innovations

We have lost our way

Routing, management, mobility management, access control, VPNs, ...

App App App
Operating
System

Million of lines of source code

5400 RFCs

Barrier to entry

Specialized Packet Forwarding Hardware

500M gates 10Gbytes RAM **Bloated**

Power Hungry

Many complex functions baked into the infrastructure

OSPF, BGP, multicast, differentiated services, Traffic Engineering, NAT, firewalls, MPLS, redundant layers, ...

An industry with a "mainframe-mentality"

OpenFlow: Enable Innovations "within" the Infrastructure

Sliced and Virtualized OpenFlow Infrastructure

Example Network Services

- New routing protocol: unicast, multicast, multipath, load-balancing
- Inter-domain routing
- Network access control
- VLAN management
- Mobile VM management
- Mobility and handoff management
- Energy management
- Network measurement and visualization
- IPvX

• ...

OpenFlow Enabled Equipments

Core Router Cisco Catalyst 6k (prototype)

(prototype)

HP Procurve 5400

Enterprise Campus **Data Center** Cisco Catalyst 3750 (prototype)

Arista 7100 series (Q4 2010)

Quanta LB4G

NEC IP8800

Circuit Switch

Ciena CoreDirector

WiMAX (NEC)

WiFi

More to follow...

Wireless

OpenFlow Deployment

- US
- Deployed as GENI substrate
- 8 Univ. interconnected by2 National Backbones (in 2010) ●
- Potential 25 universities in the next step

- Europe
- 5 EU Universities interconnected by GEANT2
- Japan
- 3-4 Universities interconnected by JGN2plus
- Interest in Korea,
 China, Canada,
 Brazil, ...

OpenFlow: A Hack to Experiment? Is there a bigger architecture story with business implications?

OpenFlow: Enable Innovations "within" the Infrastructure

Architecturally what It Means

Why Providers Care: New Data Center

Cost

200,000 servers
Fanout of 20 ⇒ 10,000 switches
\$5k commercial switch ⇒ \$50M
\$1k custom-built switch ⇒ \$10M

Savings in 10 data centers = \$400M

Control

- Optimize for features needed
- Customize for services & apps
- Quickly improve and innovate

The value prop applies to enterprise and service provider networks 6

Ecosystem Coming Together

Universitie s

Researchers

Research & Education
Network

Vendors (Hardware/Software)

Switch/Router Vendors

- Enterprise & Backbone
- Packet & Circuit
- Wireless

Chip Vendors

- Broadcom, Marvell, Dune,

New Class

- Nicira

Providers

Data Center

Google, Amazon, Microsoft, ..

NW Providor

DT, DoCoMo (Level3, BT, Verizon,..)

Ideally we want

Mobile Networks Today...

Our Vision of Tomorrow

Separating the infrastructure from the service providers.

OpenFlow Wireless Platform: WiFi, WiMAX, Wired Networks

Stanford Deployment

- Deployed
 - 80+ WiFi APs across School of Engineering
 - 2 WiMAX basestations
 - Multiple switches in wiring closets
- Planned WiMAX deployment
 - To deploy outdoor WiMAX basestation to serve School of Engineering
 - To use stack from Open Programmable WiMAX

Current Demo at Stanford

How innovation in mobility management can use the platform

demonstrate "macrodiversity" performed over WiFi and WiMAX

WiFi-WiMAX Handover

- Technology agnostic
 - Shown handover between WiFi-WiMAX
- Device/technology/application customizable

http://www.openflowswitch.org/wp/n-casting-mobility-using-openflow/

Unicasting

Tricasting

OpenFlow Wireless Extension for GENI Networking Substrate

Software-defined Networks and OpenFlow

April 2010

With Martin Casado and Scott Shenker And contributions from many others

Thank you!

OpenFlow Wireless Components

- OpenFlow as common API to forwarding elements (switches, APs, base-stations)
- Remote configuration of devices
- Virtualization using FlowVisor in forwarding
- Uses NOX as controller with simple API
 - e.g. rerouting (done in 12 lines)

OpenFlow: Architecture Concepts

- Separate data from control
 - A standard protocol between data and control
- Define a "generalized flow" based data path
 - Very flexible and generalized flow abstraction
 - Delayer or open up layers1-7
- Logically centralized "open" controller with API
 - For control and management applications
- Virtualization of data and control planes
- Backward compatible
 - Though allows completely new header