
SUNDR:
Secure Untrusted Data Repository

Jinyuan Li NYU/Stanford

Maxwell Krohn MIT
David Mazières Stanford
Dennis Shasha NYU

Stanford Computer Forum Security Workshop Mar 20, 2006

Stanford Secure Computer Systems Group 2

Motivation
File system integrity is critical

sourceforge.net: 115,000+ projects, including kernel
projects

Stanford Secure Computer Systems Group 3

Goal

Prevent undetected tampering with
your files!

Stanford Secure Computer Systems Group 4

Current approaches

Trust system administrator to do a good job
Keep up with latest security patches
Restrict accesses as much as possible
…

Stanford Secure Computer Systems Group 5

Not always reliable

Stanford Secure Computer Systems Group 6

SUNDR’s approach
SUNDR is a network f/s designed for running on
untrusted, or even compromised server

Place trust in users authorized to modify particular
files, not in server or admins maintaining server

SUNDR properties:
Unauthorized operations will be immediately detected
If server drops operations, can be caught eventually

Stanford Secure Computer Systems Group 7

Talk Outline

Motivation
Design

A strawman file system
SUNDR design

Implementation
Evaluation

Stanford Secure Computer Systems Group 8

Traditional file system model
Client A:

Client B:

File Server:

req

resp

req

resp

Server can’t prove the requests it has received
and executed

Trust servers to execute the requests faithfully
Trust servers to return correct responses

Stanford Secure Computer Systems Group 9

SUNDR model

Server does not execute anything
Server just stores signed requests from clients
Server replies the request with other signed requests
Client reconstructs the response by executing returned
requests in order

Client A:

Client B:

File Server:

{write}K
-1

{read}K
-1

{write}K
-1

1: {write}K
-1

1: {write}K
-1

2: {read}K
-1

Stanford Secure Computer Systems Group 10

Danger: Drop or reorder requests

Server can drop some requests
Back out critical security patches

Or can show requests to clients in diff orders
Overwrite files with old version

Client A:

Client B:

File Server:

{req}

{req}

{req, req}

{req, req}

Stanford Secure Computer Systems Group 11

Ideal File system semantics
File system calls can be mapped to fetch/modify
operations

Fetch – client validates cache, or downloads new data
Modify – client makes new change visible to others

“Fetch-modify” consistency: A fetch reflects
exactly the authorized modifications that happen
before it

Impossible without online trusted parties
Goal: Get as close to possible to “fetch-modify”
consistency without online trusted parties

Stanford Secure Computer Systems Group 12

Strawman FS: Signed log approach

A
Modify f2

sig3

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f2

sig3

B
Fetch f2

sig4

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f1

sig1

B
Fetch f4

sig2

sig1

sig2

A
Modify f2

sig3

sig3

File server:

A: echo “A was here” >> /share/aaa

B: cat /share/aaa

userA:

userB:

Stanford Secure Computer Systems Group 13

An ordering relation

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f2

sig3

B
Fetch f2

sig4

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f2

sig3

We define ≤ relation:

LogA ≤ LogB iff LogA

is prefix of LogB

A’s latest log:

B’s latest log:

LogA

LogB

Stanford Secure Computer Systems Group 14

Detecting attacks by the server

A
Modify f2

sig3

A
Modify f1

sig1

B
Fetch f4

sig2

B
Fetch f2

sig3

A: echo “A was here” >> /share/aaa
A

Modify f1
sig1

B
Fetch f4

sig2

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f2

sig3
A

B
B: cat /share/aaa (stale result!!!)

File server

Stanford Secure Computer Systems Group 15

A
Modify f1

sig1

B
Fetch f4

sig2

B
Fetch f2

sig3b

A
Modify f1

sig1

B
Fetch f4

sig2

A
Modify f2

sig3a

A’s log and B’s log can
no longer be ordered:
LogA ≤ LogB, LogB ≤ LogA

A’s latest log:

B’s latest log:

Detecting attacks by the server

LogA

LogB

sig1

sig2

sig3a

Stanford Secure Computer Systems Group 16

Properties of Strawman FS

High overhead, no concurrency
A bad server can’t make up operations
users didn’t perform
A bad server can conceal users’
operations from each other, however, it
will be detected if users check with
each other.

Call this property “fork consistency”

Stanford Secure Computer Systems Group 17

Fork Consistency: A tale of two worlds
File ServerA’s view B’s view

… …

Stanford Secure Computer Systems Group 18

Implications of fork consistency

Closest possible consistency to “fetch-modify”
without online trusted parties

Can be leveraged with online trusted parties to
detect violations of “fetch-modify” consistency

users periodically gossip to check violations
or deploy a trusted online “timestamp” box

Stanford Secure Computer Systems Group 19

Talk Outline

Motivation
Design

Strawman FS
SUNDR approach

Implementation
Evaluation

Stanford Secure Computer Systems Group 20

SUNDR Data Structure

Part I
How to reduce each user’s writable files to a
hash value?
=> given this value, we can fetch and verify
any piece of data

Part II
How to retrieve each other’s latest hash value
w/o trusted online parties?
=> achieve fork consistency

Stanford Secure Computer Systems Group 21

SUNDR data structures (Part I)
Each file is writable by one user or group
Partition files by allowed writers

Hash each partition down to a 20-byte digest

SUNDR FS state is the aggregation of all
users’ digests

digest
GroupG:

User B: digest

User A: digest
SUNDR State

Stanford Secure Computer Systems Group 22

Hash tree (1): File handle
Each file is hashed into a 20-byte value using a hash
tree

Blocks are stored and indexed by their content-hash
No trust needed on the server

data1

Metadata

H(data1)

H(data2)

H(iblk1)

data2

data3

data4
H(data3)

H(data4)

iblk1

20-byte File Handle

i-node

Stanford Secure Computer Systems Group 23

Hash tree (2): FS digest
Hash all files writable by each user/group to a 20-byte
digest

From this digest, client can retrieve and verify any
block of any file (SFSRO, CFS, Pond, …)

2 20B F.H.

3 20B F.H.

4 20B F.H.

i-table

i-node 2

20-byte digest

i-num

i-node 3

i-node 4

Stanford Secure Computer Systems Group 24

SUNDR FS
2 20B F.H.
3 20B F.H.
4 20B F.H.

digest

2 20B F.H.
3 20B F.H.
4 20B F.H.

digest

Root:

UserA:

SUNDR State

How to fetch “/share/aaa”?

/:
Dir entry: (share, Root, 3)

Lookup “/”

/share:
Dir entry: (aaa, UserA, 4)

Lookup “/share”

Fetch “/share/aaa”

digest
UserB: …

Stanford Secure Computer Systems Group 25

SUNDR data structure (Part II)
Want server to order users’ fetch/modify
operations w.r.t. users’ digests
Goal: Expose server’s failure to order
operations properly

Sign version vector along with digest
Version vectors will expose ordering
failures

Stanford Secure Computer Systems Group 26

Version structure (VST)

Each user has its own version structure (VST)
Server keeps latest VSTs of all users
Clients fetch all other users’ VSTs from server
before each operation and cache them
We order VSTA≤ VSTB iff all the version numbers
in VSTA are less than or equal in VSTB

VSTA

Signature A

A
Digest A

A - 1
B - 1
G - 1 VSTB≤

Signature B

B
Digest B

A - 1
B - 2
G - 2

Stanford Secure Computer Systems Group 27

Updating VST: An example
File Server

B

AA-0

B-0

A: echo “A was here”
>> /share/aaa

B: cat /share/aaa

DigA

A

A-1

B-1DigA

A

A-1

B-1DigA

A

A-1

B-1DigA

A

A-0

B-1DigB

B

A-1

B-2DigB

B

A-1

B-2DigB

B

A-0

B-1DigB

B

VSTA≤ VSTB

Stanford Secure Computer Systems Group 28

Detecting attacks
Server

B

A: echo “A was here”
>> /share/aaa

B: stale result!!!

A

A-1

B-1DigA

A

A-0

B-0DigA

A

A-0

B-1DigA

B

A-1

B-1DigA

A A-0

B-1DigB

B

A-0

B-2DigB

B

A-0

B-2DigB

B

A’s latest VST and B’s can
no longer be ordered:
VSTA ≤ VSTB, VSTB ≤ VSTA

≤
A-0

B-0DigA

A

B: cat /share/aaa

Stanford Secure Computer Systems Group 29

Talk Outline

Motivation
Design

Straw-man FS
SUNDR approach

Implementation
Evaluation

Stanford Secure Computer Systems Group 30

SUNDR Implementation

SUNDR

client daemon

Kernel

User

Client Machine Domain

xfs.ko redirectorVFS

FS operations

consistency server

block server

SUNDR server-side setup

Stanford Secure Computer Systems Group 31

Evaluation
Running on FreeBSD 4.9

PentiumIV 3G, 3G RAM, 100Mbps LAN

Two configurations:
SUNDR : write updates to disk synchronously
SUNDR/NVRAM : simulates effects of NVRAM

Esign cryptographic overhead
Sign: 155us
Verify: 100us

Stanford Secure Computer Systems Group 32

LFS small file benchmark

0

2

4

6

8

10

12

Create (1K) Read (1K) Unlink

NFSv2 NFSv3 SUNDR SUNDR/NVRAM

Se
co

nd
s

Stanford Secure Computer Systems Group 33

Emacs installation performance

0
10
20
30
40
50
60
70

Untar Config Gmake Install Remove

NFSv3 SUNDR SUNDR/NVRAM

Se
co

nd
s

Stanford Secure Computer Systems Group 34

Conclusion

SUNDR provides file system integrity
with untrusted servers

Users detect unauthorized operations immediately
Users can detect consistency violations eventually

Yes, SUNDR is a practical file system
performance is close to NFS

	SUNDR:�	Secure Untrusted Data Repository
	Motivation
	 Goal
	Current approaches
	Not always reliable
	SUNDR’s approach
	Talk Outline
	Traditional file system model
	SUNDR model
	 Danger: Drop or reorder requests
	Ideal File system semantics
	 Strawman FS: Signed log approach
	An ordering relation
	Detecting attacks by the server
	Detecting attacks by the server
	Properties of Strawman FS
	 Fork Consistency: A tale of two worlds
	Implications of fork consistency
	Talk Outline
	 SUNDR Data Structure
	SUNDR data structures (Part I)
	 Hash tree (1): File handle
	 Hash tree (2): FS digest
	 SUNDR FS
	SUNDR data structure (Part II)
	Version structure (VST)
	Updating VST: An example
	Detecting attacks
	Talk Outline
	SUNDR Implementation
	Evaluation
	LFS small file benchmark
	Emacs installation performance
	Conclusion

