
Host-based, Run-time
Win32 Bot Detection

Liz Stinson
John Mitchell

bot : definition

automated program; simulates human activity
We’re interested in malicious ones
Under real-time, fine-grained control by an
entity that simultaneously manages other bots
Bots mostly useful in the aggregate and
proportionally so – i.e. as a botnet
Applications:

DDoS extortion, Google AdSense abuse,
identity theft, spamming, phishing-site hosting

bots : characteristics

General, multi-purpose, extensible
Download arbitrary files
Execute arbitrary programs
Connect to arbitrary IPs

Ongoing control via a command-and-control
(C&C) network :

C&C protocol
rendez-vous point

bots : C&C network

bot master Intermediary
RP

RP

RP

...

bots : functionality

Every bot we looked at provided a way to :
Download a file and optionally execute it

• Most offered just via HTTP; some also via FTP
• Implies update functionality
• Also visiting URLs and optionally specifying a referrer
• Including HTTP server software so can host phishing site

Participate in DDoS
• Some have quite elaborate attack vectors

Create port redirects (HTTP{S}, SOCKS, … proxies)
Most bots provided a means to clone and spy
Some bots :

Spamming (accounting for 70% of all spam, Message Labs, ‘04)
Scanning, Spreading
Key logging …

Distinction from precursor
malware : ongoing C&C

How to exploit this :
Network-based approaches : e.g. develop a
signature for bot traffic then flag

• Problem: perturb bot traffic to be indistinguishable
from legitimate traffic (or encrypt it)

• Assume: can’t rely on particular protocol, port, payload
• Motivates against content-based filtering

Host-based : ours. Have more info at host level.
Since the bot is controlled externally, use this
meta-level behavioral signature as basis of
detection

Our approach : identify
instances of external control

Look at the “system calls” made by a program
In particular at certain of the args to these syscalls

• We’ll call these chosen arguments our sinks

Possible sources for these sinks can be categorized :
local : { mouse, keyboard, file I/O, … }
remote : { network I/O }

An instance of external control occurs when data
from a remote source reaches a sink

Implies no value judgment a/b the nature of that control

Big picture schema

bind(…) CreateProcessA(…) NtCreateFile(…) ...

Local sources

mouse

keyboard
file I/O

Remote sources

network I/O

S

O

U

R

C

E

S

S

I

N

K

S

????

outline

I. Bots
II. Our approach to detection

A. Motivating abstraction
B. Platform
C. Design / Implementation

III. Results
A. Bot testing
B. Benign program testing

IV. Evading detection
V. Future directions

Platform : detours library

API interposition; can hook any function as long as it’s
exported (by name) by a DLL (don’t need *.lib files)
Overwrite first 5 bytes of memory image of targeted
function with an uncond jmp to your replacement fxn

DLLs copy-on-write for NT family
• User-land hooking; Not system-wide

Don’t need src; just inject our DLL into target process
No changes to target binary
Applies to calls made by calls
Link time irrelevant
Hunt/Brubacher, MSR

http://research.microsoft.com/sn/detours/

http://research.microsoft.com/sn/detours/

Start Target

1. Call

2. Return

Start Target

1. Call

6. Return

Detour

2. Jump

Trampoline

3. Call

5. Return

Target

4. Jump

Before:

After:

Pictorally – c/o detours folks

TAINTED
(S_1)

Taint
instantiators

CLEAN
(S_0)

ERROR execute s

Design Init

Two types of tainted things

1. Memory regions : [addy, addy + len) tuples
• Parameterized by receive offset, local offset,

amount of dirty data, ancestor receive buffer,
type (ANSI or Unicode), …
• Why all this data? False positive mitigation

2. Values : strings, integers
• Why strings? Provide some resilience against OOB

copies (cf. spybot)

• Integers : port numbers, IP addresses, …

Taint instantiation :
network receive functions

recv(addy) len

for every w_i ε [addy, addy + len)

S_0 −= w_i
S_1 U= w_i

Taint instantiators :
network receive functions

recv(…), recvfrom(…), WSARecv(…),
WSARecvFrom(…),
WSARecvDisconnect(…), …

NtDeviceIoControlFile : non-blocking
Do two things here:

1. Create cached copy of this recv buffer (used
in false positive mitigation – later)

2. Add this [base, base + bounds) pair to tainted
addys

Taint propagation

Copy X Y

X ε S_1 ?

S_0 −= Y
S_1 U= Y

S_0 U= Y
S_1 −= Y

YES NO

Taint propagators :
memory regions

Obvious
C library functions : string-copying, string concatenation, mem-
copying/moving, buffer formatting (sprintf,…), …

• Where? From every C run-time libe to be thorough plus ntdll.dll
Win32 versions of these : lstrcpyn{A,W}, StrCpyN{A,W},
wsprintf{A,W}, … plus safe versions of each

• Where? Spread across a dizzying number and variety of DLLs
Conversion functions : multi-byte to wide-char and vice versa

Less obvious
realloc(…)
SearchPath{A,W}(…)
InternetCrackUrl{A,W}(…), ...

In general: any function that takes an ANSI or Unicode buffer and
outputs same where the output is a sub or superset of the input

Taint propagators :
values and other

Two other types of taint propagators:
1. Certain fxns that take a character buffer input, and

output a value :
E.g. atoi(…) { port #s, PIDs, … },
gethostbyname(…), inet_ntoa(…), …

2. Any fxn that takes a char buffer input, we check:
1. Is this a tainted memory region?

a) If so, make sure the string therein is a dirty string
b) If not, is this a dirty string?

i. If so, transitively taint its memory region
[Symbiotic r/p b/n tainted addys, dirty strings]

Taint checking

on arg X to gate G

X ε S_1 ?

FLAG nop

YES NO

Execute G

Gate functions

Process management : dirty filenames, PIDs
CreateProcess{A,W}, WinExec
NtTerminateProcess

File management : dirty filenames
NtOpenFile
NtCreateFile

Network interaction : dirty IPs, port #s; tainted send
NtDeviceIoControlFile (send, sendto, bind, ...)
connect, WSAConnect
sendto, WSASendTo
HttpSendRequest{A,W}
SSL_write (calls into send(...) w/encrypted output buf)
IcmpSendEcho

Behaviors : ideally disjoint;
check at lowest possible level

Name
1 tainted NtOpenFile

2 tainted NtCreateFile

3 dirty program execution

4 dirty process termination

5 bind dirty IP

6 bind dirty port

7 connect to dirty IP

8 connect to dirty port

9 dirty send

10 derived send

11 sendto dirty IP

12 sendto dirty port

13 dirty HttpSendRequest

14 dirty IcmpSendEcho

MoveFile{Ex}{A,W},
MoveFileWithProgress{Ex}{A,W},
DeleteFile{A,W}, ReplaceFile{A,W},
Win32DeleteFile, ...

CreateFile{A,W}, OpenFile,
CopyFile{Ex}{A,W}, fopen,
_open, _lopen, _lcreat, ...

send, sendto, WSASend, WSASendTo

ShellExecute{Ex}{A,W},
CreateProcess{A,W}, WinExec

Results

Looked at 5 bots : agobot, dsnxbot, g-sysbot, sdbot,
spybot
At least three of these have totally independent code
bases : agobot, dsnxbot, sdbot
Sdbot, g-sysbot, spybot : shared ancestry but spybot
differs in a non-trivial manner and even sd/gsys don’t
export same command interface
In general overall approach to implementing
functionality X may be different and almost certainly
code to do same differs (greatly) from bot to bot

DSNXbot : only matches
subset of behaviors

DSNXBOT 0.4b (6/3/01) B1 B2 B3 B4 B5 B6 B7 B8 B9 …
Y <directory_path> // lists subdirs yes

P <loc_port> <rem_host> <rem_port> // redirect yes yes yes yes

E <path_to_executable> // execute yes yes yes

W <URL> <local_path> // web download yes yes yes

A <port> <out_file> <start_ip> <num> // port scan yes yes yes

T <filename> // delete file yes

D <file_to_send> // dcc send yes

C <num> <server> <port> // clone yes yes

C G {nick,chan} <attack_num> yes

C R <raw_text> yes

C T <new_target> // change attack target yes

…

agobot – spamming, lots of
DDoS, redirect options

AGO_NEW version 3 (4/16/04) … B5 B6 B7 B8 B9 B10 B11 B12

phatwonk <host> <time> <delay> yes yes

phatsyn <host> <time> <delay> <port> yes yes

phaticmp <host> <time> <delay> yes

synflood <host> <time> <delay> <port> yes yes

httpflood <URL> <num> <ref> <delay> <recurse?> yes yes

udpflood <host> <port> <time> <delay> yes yes

targa3 <host> <time> yes

tcp <loc_port> <dst_host> <dst_port> yes yes yes yes

gre <server> <client> [localip] yes

http <port> yes yes yes

https <port> yes yes

socks <port> yes

socks5 <port> yes

spam.setlist <URL> yes yes

spam.settemplate <URL> yes yes

spam.start yes yes

…

Spybot 1.3 (4/5/03) – richest
file mgmt command set

SPYBOT 1.3 (4/5/03) B1 B2 B3 B4 B5 B6 B7 B8 …

delete <filename> yes

rename <old_filename> <new_filename> yes

makedir <dirname> yes

list <path/dir> // may include wildcards yes

get <local_filename> (DCC) yes

httpserver <port> <root_dir> yes

scan <start_IP> <port> <delay> <out_file> yes

…

Resulting observation : bots
implicitly amp the S in the SNR

Our detection platform treats all network
receive buffers the same (regardless of their
contents: HTTP, IRC, FTP, SMTP, …)
We let the bot tell us (implicitly) what’s
interesting : which recv bufs, what parts

Do otherwise and system becomes very fragile
(e.g. bot writer changes delimiter) and open to
exploitation (white-listed words)

False positives : technical

1. Values : since no visibility into value assignment
• Some value is obtained from a tainted memory region

(via call to : atoi, gethostbyname, …)
• That same value is later used in a sink
• But no cause/effect relationship actually present

2. Strings : since transitively taint mem region if its
contents match a known dirty string

• E.g. “.execute C:\WINDOWS\system32\notepad.exe
{0,1}” followed at some later point by any command
(e.g. “open somefile.txt”) which involves executing
notepad.exe

• Will flag later command’s call to NtOpenFile/NtCreateFile
on notepad.exe as dirty even though strictly speaking it’s not

False positives : contextual

Flagging as malicious widely accepted
behavior
E.g. Web browsers, server programs

GET / HTTP/1.1 ...

HTTP/1.1 ...

www.bar.com

www.foo.com

False negatives

HttpSendRequest : calls into connect(…) –
usually – and send(…)

Private StringBuffer implementation in wininet.dll
used to craft actual HTTP message

Spybot downloading file
Tokenizes URL into hostname and filepath byte-
by-byte via ‘=‘

Scanning agobot : input is an IP range
192.168.100/24 e.g. – fourth octet obtained via
rand(…)

Benign program testing

Have performed some preliminary testing
against benign programs that interact with the
network

IE, Firefox, Outlook, IRC clients
These programs generated no flagged
behaviors
Not good news w.r.t. the browsers; likely a code
coverage issue
More work to do here (breadth + depth)

Evading detection
1. Don’t do anything : dormant bots not detected
2. Convert parameterized bot commands to take no parameters

Presumably this occurs at cost of granularity of control
3. Statically link in C library functions

Maybe we can convert statically-linked executable to one
that uses C run-time libraries; but in an adversarial
environment? Harder.

4. Write own versions of mem-copying, tokenizing, … fxns
5. Easier : encrypt using private encryption functions

If use any mechanism to encrypt that we have visibility
into (e.g. OpenSSL), we can still detect

6. Get out of the detours sandbox
phrack 0x62, section 0x05

Future directions

Look at other malware, e.g. worms

Move tainting to lower level

More/other gate functions?

Identify high-level behaviors from sequences
of component behaviors; e.g. “port redirect”

	Host-based, Run-time �Win32 Bot Detection
	bot : definition
	bots : characteristics
	bots : C&C network
	bots : functionality
	Distinction from precursor malware : ongoing C&C
	Our approach : identify instances of external control
	Big picture schema
	outline
	Platform : detours library
	Pictorally – c/o detours folks
	Slide Number 12
	Two types of tainted things
	Taint instantiation : �network receive functions
	Taint instantiators : �network receive functions
	Taint propagation
	Taint propagators : �memory regions
	Taint propagators : �values and other
	Taint checking
	Gate functions
	Behaviors : ideally disjoint; check at lowest possible level
	Results
	DSNXbot : only matches �subset of behaviors
	agobot – spamming, lots of DDoS, redirect options
	Spybot 1.3 (4/5/03) – richest file mgmt command set
	Resulting observation : bots implicitly amp the S in the SNR
	False positives : technical
	False positives : contextual
	False negatives
	Benign program testing
	Evading detection
	Future directions

