Collision Resistant Hashing: Can Composition Help?

Dan Boneh

Joint work with Xavier Boyen

Collision Resistant Hashing

- Function H : $\{0,1\}^* \to \{0,1\}^n$
 - is collision resistant if "difficult" to find

$$M_0 \neq M_1$$
 s.t. $H(M_0) = H(M_1)$

- Used for digital signatures, e.g. certs.
- Note: not needed for HMAC
 - and not really needed for digital sigs.

The bad news ...

2005 was a tough years for CRHFs.

	Digest	Brute-force	Better	
	<u>Length</u>	<u>Attack</u>	<u>Attack</u>	
MD4	128	2 ⁶⁴	21	[NSKO'06]
MD5	128	2 ⁶⁴	2 ³⁰	[WY'05,LL'05]
RIPEMD-160	160	2 ⁸⁰	2 ¹⁸	[WLFCY'05]
SHA-1	160	2 ⁸⁰	2 ⁶³	[WYY'06]

- Remaining functions (for now):
 - □ SHA-256, SHA-512, Whirpool
 - and algebraic functions.

Certificate trouble

Lenstra, Wang, de Weger '05:

Requested cert

Obtained cert

What to do?

- Option 1: Design new hash functions.
 - NIST hash function competition.
 - □ Hash function workshop (Aug 24-25).
- Option 2: Strengthen existing functions.
 - e.g. Double number of rounds of SHA-1.
- Hedging our bets:

Suppose H_1 , H_2 are two CRHFs (currently).

Goal: build a new hash H s.t.

either H_1 , H_2 is a CRHF \implies H is a CRHF.

Hedging our bets

Simple construction:

$$H(M) := H_1(M) \parallel H_2(M)$$

Property (*):

Any collision M, M' on H \Rightarrow

Collision on both H₁ and H₂

 \Rightarrow If either $m H_1$ or $m H_2$ is CRHF then H is CRHF

... but long digests. (and twice as slow as H₁ or H₂)

Can we do better?

- Can we combine H₁, H₂ so that:
 - 1. Houtputs shorter digests, and
 - Property (*) holds: collision on
 H gives collisions on both H₁, H₂
- Answer: NO [BB'06]
 - □ Suppose H_1 , H_2 output n-bit digests.
 - \square H outputs fewer than 2n bits \Rightarrow no proof of security.
- \Rightarrow Concatenation is the optimal way to hedge bets.

Composition: a few details

- A secure CRHF composition is a pair (C, P) where:
 - \Box $C^{H_1,H_2}(M)$ is a hash function. Uses two oracles H_1 , H_2 .
 - □ PH₁,H₂ (M,M') is an "efficient" algorithm such that:
 - If (M,M') are a collision for C^{H₁,H₂} then
 P outputs collisions (M₁,M₁'), (M₂,M₂') for H₁, H₂
 - P is a "proof of security" for C.

Thm [BB'06]: If C outputs fewer than 2n bits then there exist H₁,H₂ and M,M' such that P fails w.h.p

More generally ...

Suppose H_i outputs t_i bit digest, for i=1,2,...,s

■ Thm: If $C^{H_1,...,H_s}(M)$ outputs fewer than $\sum t_i$ bits there exist $H_1,...,H_s$ and M,M' such that P fails whp.

Our example for $H_1, ..., H_s$ is very similar to SHA-1.

Proof Idea

- Step 1: Prove there are H₁, H₂ and M,M' s.t.
 - 1. (M,M') are a collision for C
 - 2. Either (M_1, M_1') or (M_2, M_2') are not a collision for H_1 or H_2

• Step 2: Use H_1,H_2 and M,M' to break P.

Joux's attack on concatenation

Merkle-Damgard hash functions:

- H₁, H₂: MD hash functions with n-bit digests.
 - □ Joux: collision for $H = H_1 || H_2$ in time $O(n 2^{n/2})$
 - ⇒ concat is a good hedge, but does not strengthen hash

Algebraic Compressions Functions

Example 1:

- $h(m, t) := g^{m||t|} \pmod{N}$
- □ One "multiplication" per ≈10 message bits.
- 2048-bit digest.
- Example 2:

$$h(m, t) := g^m h^t \in G$$

- □ Two "multiplications" per ≈10 message bits.
- □ 192-bit digest (using e.c.)
- Example 3: VSH:

$$h(m, t) := t^2 \cdot \Pi p_i^{m_i} \pmod{N}$$

- Contini-Lenstra-Steinfeld '06
- □ One multiplication per ≈200 message bits
- Speed: 1.1MB/sec on 1 GhZ P3.

Summary

- Can we hedge our bets using current CRHFs?
 - Yes: concatenation.
 - ... but no better method exists.

- Promising research on provable algebraic hash functions.
 - Open: can they ever compete with SHA-512 ?