Games and the Impossibility of Realizable Ideal Functionality

Anupam Datta Ante Derek John C. MitchelL Ajith Ramanathan Andre Scedrov

Background

- Games [GM84]:
 - Defines specific moves for each player and properties that need to hold
 - Not composable
 - Examples: IND-CPA, IND-CCA for encryption
- Functionalities [Can01, PW01]:
 - Simulation relation between real protocol and ideal functionality, which is "secure by construction"
 - Composable (main advantage)
 - Example: Secure channel using trusted party
- Goal: Investigate relationships between the two specification methods

Contributions

- Formalize the connection between two notions
 - For a primitive P specified by games we propose a definition of an ideal functionality for P
- Impossibility theorem for bit-commitment
 - Motivated by [CF2001]
 - No ideal functionality for bit-commitment can be realizable (plain model)
- Generalizations
 - Variants of symmetric encryption and group signatures
 - Handle setup assumptions (work in progress)

Game examples: encryption

- Passive adversary
 - Semantic security
- Chosen ciphertext attacks (CCA1)
 - Adversary can experiment with decryption before receiving a challenge ciphertext
- Chosen ciphertext attacks (CCA2)
 - Adversary can experiment with decryption before and after receiving a challenge ciphertext

Game Format

Challenger

Attacker

Game Format

Passive Adversary

Chosen ciphertext CCA1

Chosen ciphertext CCA2

Player

Games

- Defines security properties
 - Specific moves for each player
 - Properties that need to hold
- Very flexible
- Some disadvantages
 - Not composable

Ideal Functionalities

- Based on indistinguishability
 - Simulation relation between real protocol and ideal functionality
- Some advantages
 - Composable

Universal composability

also "reactive simulatability" [BPW], ... see [DKMRS]

REAL

IDEAL

Example: Secrecy

Challenge-response protocol

$$A \rightarrow B \quad \{i\}_k$$

 $B \rightarrow A \quad \{i+1\}_k$

This protocol provides secrecy if indistinguishable from "ideal" protocol

```
A \rightarrow B \quad \{random_1\}_k

B \rightarrow A \quad \{random_2\}_k
```

Example: Authentication

Authentication protocol

$$A \rightarrow B \qquad \{i\}_k$$

$$B \rightarrow A \quad \{i+1\}_k$$

Secure if indistinguishable from "ideal" protocol

$$A \rightarrow B$$
 {random₁}_k

$$B \rightarrow A \quad \{random_2\}_k$$

$$B \rightarrow A$$
 random₁, random₂ on a magic secure channel

What did we do?

- Formalize the connection between two notions
 - For a primitive P specified by games we propose a definition of an ideal functionality for P
- Impossibility theorem for bit-commitment
 - Motivated by [CF2001]
 - No ideal functionality for bit-commitment can be realizable (plain model)
- Generalizations
 - Variants of symmetric encryption and group signatures
 - Handle setup assumptions (work in progress)

Intuition: What is Ideal about a Functionality?

P a primitive, security defined by games

- F speaks the same language
- F satisfies security requirements perfectly

Intuition: Impossibility results

For a certain P no corresponding F is realizable

Bit Commitment

- Commit phase
 - Choose a random bit b
 - Announce some value f(k,b)
 - where k may be random key, etc
- Open the commitment
 - Reveal b and k
 - Since f is publicly known, can verify b
- Analogy
 - Put message in sealed envelope to open later

Example: distributed coin flipping

- Alice
 - Choose random bit a
 - Announces commitment to a
- Bob
 - Choose random bit b
 - Announces commitment to b
- Communication
 - Exchange their bits, compute a ⊕ b
- Reveal commitment
 - Alice knows that Bob did not change his bit after seeing hers

Subtle issue: what if Bob stops before completing protocol?

Impossibility Theorem

- If F is any ideal functionality for bitcommitment, then no real protocol securely realizes F
- Proof idea: Can construct informationtheoretically hiding and binding protocol for BC that does not use TTP

Very simple idea

- Commitment depends on chosen bit
 - It is not possible to do this perfectly, i.e. in a way that is indistinguishable to a computationally unbounded attacker
- This is not the proof ...
 - but perhaps this helps

Actual proof: Phase 1

Actual proof: Phase 2

More of the Proof:

- Systems F|S and F|S' together constitute a real implementation for BC that is
 - Info-theoretically binding
 - Info-theoretically hiding
 - Correct
- A contradiction

Other results

- Any property that gives BC cannot be realized
 - Composition theorem
- Variant of Symmetric encryption
 - Semantic security and Ciphertext integrity
- Variant of Group signatures
 - Anonymity and Traceability (strong variant)

Generalizations

- Handle setup assumptions (PKI, Random oracle, CRS)
 - Model setup assumption as a functionality in the hybrid model that only work in the initial phase
 - Similar impossibility results if these functionalities are global
- Proof not specific to bit-commitment
 - Intuition: contradicting game requirements lead to unrealizable functionalities
 - Like to have: a result connecting information-theoretic impossibility of satisfying games with impossibility of a realizable ideal functionality

Related Work

- Bit-commitment
 - [CF2001] Impossibility result in the plain model, constructions using CRS
 - [DN2002] More constructions using CRS
- Impossibility results
 - [Can2001] Coin-tossing, zero knowledge
 - [CKL2003] Multi-party computation
- Models
 - [PS2004] Achieves bit-commitment in plain model
- Other notions of composable security
 - [DDMP2004] Conditional security

Summary

- Formalize the notion of an ideal functionality for a primitive
 - Information theoretic security
- Impossibility theorem for bit-commitment
 - No ideal functionality for bit-commitment can be realizable (plain model)
 - Variants of symmetric encryption and group signatures
- Work in progress
 - Handle setup assumptions
 - Generalizations
- May need an alternative approach to universally compositional security in practice
 - Conditional composability instead of universal composability

Questions?