
EXecution generated Executions:
Automatically generating inputs of death.

Dawson Engler
Cristian Cadar, Junfeng Yang, Can Sar, Paul

Twohey
Stanford University

Generic features:
– Baroque interfaces, tricky input, rats nest of

conditionals.
– Enormous undertaking to hit with manual testing.

Random “fuzz” testing
– Charm: no manual work
– Blind generation makes hard

to hit errors for narrow
input range

– Also hard to hit errors that
require structure

This talk: a simple trick to finesse.

Goal: find many bugs in systems code

int bad_abs(int x) {
if(x < 0)

return –x;
if(x == 12345678)

return –x;
return x;

}

Basic idea: use the code itself to construct its input!
Basic algorithm:
– Symbolic execution + constraint solving.

– Run code on symbolic input, initial value = “anything”
– As code observes input, it tells us values input can be.
– At conditionals that use symbolic input, fork

» On true branch, add constraint that input satisfies check
» On false that it does not.

– exit() or error: solve constraints for input.
– Rerun on uninstrumented code = No false positives.
– IF complete, accurate, solvable constraints = all paths!

EXE: EXecution generated Executions

– Initial state: x
unconstrained

– Code will return 3 times.
– Solve constraints at each

return = 3 test cases.

The toy example
int bad_abs(int x) {

if(x < 0)
return –x;

if(x == 12345678)
return –x;

return x;
}

int bad_abs_exe(int x) {
if(fork() == child)

constrain(x < 0);
return -x;

else
constrain(x >= 0);

if(fork() == child)
constrain(x == 12345678);
return -x;

else
constrain(x != 12345678);

return x;
}

The mechanics
User marks input to treat symbolically using either:

Compile with EXE compiler, exe-cc. Uses CIL to
– Insert checks around every expression: if operands all

concrete, run as normal. Otherwise, add as constraint
– Insert fork calls when symbolic could cause multiple acts

./a.out: forks at each decision point.
– When path terminates use STP to solve constraints.
– Terminates when: (1) exit, (2) crash, (3) EXE detects err

Rerun concrete through uninstrumented code.

Isn’t exponential expensive?
Only fork on symbolic branches.
– Most concrete (linear).

Loops? Heuristics.
– Default: DFS. Linear processes with chain depth.
– Can get stuck.
– “Best first” search: chose branch, backtrack to point

that will run code hit fewest times.
– Can do better…

However:
– Happy to let run for weeks as long as generating

interesting test cases. Competition is manual and
random.

Where we’re going and why.
One main goal:
– At any point on program path have accurate, complete

set of constraints on symbolic input.
IF EXE has and can solve THEN
– Can drive execution down all paths.
– Can use path constraints to check if any input value

exists that causes error such as div 0, deref NULL,etc.
– Entire motivation: all path + all value for much code.

Next:
– Mechanics of supporting symbolic execution
– Universal checks.
– Results.

Mixed execution
Basic idea: given expression (e.g., deref, ALU op)
– If all of its operands are concrete, just do it.
– If any are symbolic, add as constraint.

– If current constraints are impossible, stop.
– If current path hits error or exit(), solve+emit.
– If calls uninstrumented code: do call, or solve and do call

Example: “x = y + z”
– If y, z both concrete, execute. Record x = concrete.
– Otherwise set “x = y + z”, record x =symbolic.

Result:
– Most code runs concretely: small slice deals w/ symbolics.
– Robust: do not need all source code (e.g., OS). Just run

Untyped memory
C code observes memory in mutiple ways
– Signed to unsigned casts
– Cast array of bytes to inode, superblock, pkt header

Soln:
– Cannot bind types to memory, must do to expressions
– Represent symbolic memory using STP primitives: array of

8-bit bitvectors.
– Bitvector=untyped, array=pointers (next)

– Each read of memory generates constraints based on
static type of read. Does not persist. Just encoded in
constraint.

Symbolic memory expressions.
Given array of “a” of size “n” and in-bounds index “i”.
– “(a[i] == 0)” becomes

– “a[i] = 4” could update any entry.
Sol’n: map to STP array (translates to SAT).
– Given “a[i]” where “i” is symbolic (other cases similar)
– If “a” has no symbolic counterpart create one, “a_sym”
– Record “a” corresponds to “a_sym”
– Build constraints using a_sym[i_sym]

– (i == 0 && a[0] == 0)
–|| (i == 1 && a[1] == 0)
–|| ..
–|| (i == n-1 && a[n-1] == 0)

Example: symbolic memory reads and writes

Example: symbolic memory reads and writes

taken branch:
i != 1 && k == 1

A non-taken soln:
i == 0 && k ==2

Automatic, systematic corner cases hitting
Conditional: fork, both branches.
Overflow: can “x + y”, “x – y”, “x * y” … overflow?
– Build two symbolic expressions
– E1: expression at precision of ANSI C’s expression types.
– E2: expression at essentially infinite precision.
– If E1 could be different than E2, force it.

Others: truncation casts, signed->unsigned.

if(query(E1 != E2) == satisfiable) {
if(fork() == child)

add_constraint(E1 == E2);
else

add_constraint(E1 != E2);
}

Universal checks.
Key: Symbolic reasons about many possible values
simultaneously. Concrete about just current ones.
Universal checks:
– When reach dangerous op, EXE checks if any input exists

that could cause it to blow up.
– Builtin: div/mod by 0, NULL *p, memory overflow.

Generalized checking.
“assert(sym_expr)”
– EXE will systematically try to violate sym_expr.
– Complete, accurate, solved path constraints = verification

Scales with sophistication of correctness checks.
– E.g., given f and inv can verify correct: inv(f(x)) = x.

Putting it all together

Limits
Missed constraints:
– If call asm, or CIL cannot eat file.
– STP cannot do div/mod: constraint to be power of 2,

shift, mask respectively.
– Cannot handle **p where “p” is symbolic: must concretize

*p. (Note: **p still symbolic.)
– Stops path if cannot solve; can get lost in exponentials.

Missing:
– No symbolic function pointers, symbolics passed to

varargs not tracked.
– No floating point.

long long support is erratic.

Talk overview
Goal: complete, accurate constraints on input.
IF can do so, THEN:
– Automatic all path coverage.
– All value checking. (Sometimes verification)

– Limits: missed constraints, NP-hard problem, loops.

Does it work? Next.
– Automatic generation of malicious disks.
– Automatic generation of inputs of death.

Automatically generating malicious disks.
File systems:
– Mount untrusted data as file systems (CD-rom, USB)
– Let untrusted users mount files as file systems.

Problem: bad people.
– Must check disk as aggressively as networking code.
– More complex.
– FS guys are not paranoid.
– Hard to random test: 40 if-statements of checking.
– Result: easy exploits.

Basic idea:
– make disk symbolic, jam up through kernel
– Cool: automatically make disk image to blow up kernel!

A galactic view [Oakland’06]

Checking Linux FSes with EXE
Why UML?
– Hard to cut Linux FS out of kernel. UML=check in situ.
– Need to clone/wait for process.
– Hard to debug OS on raw machine.

Hacks to get Linux working
– Disable threading
– Replace asm functions (strlen, memcpy) with EXE versions
– UML linked @ fixed (too small) location. Stripped down.
– CIL could not handle 8 files. Compiled with gcc.

Hacks to EXE:
– v = e, with e symbolic: do not make v symbolic if e == val
– No free of symbolic heap-allocated objects.

Results
Ext2:
– Four bugs.
– One buffer overflow = r/w arbitrary kernel memory
– Three = kernel crash.

Ext3:
– Four bugs (copied from ext2)

JFS:
– One null pointer dereference.

Generated disk for JFS, Linux 2.4.27.

– Create 64K file, set 64th sector to above. Mount.

BPF, Linux packet filters
“We’ll never find bugs in that”
– Some of most heavily audited, best written open source
– Easy to pull out of kernel.

Mark filter, packet as symbolic.
– Symbolic = turn check into generator of concretes.
– Safe filter check: generates all valid filters of length N.
– Interpreter: will produce all valid filter programs that

pass check of length N.
– Filter on message: generates all packets that accept,

reject.

Results!

Results: BPF, trivial exploit.

Linux Filter
Generated filter:

offset=s[0].k passed in; len=2,4

Conclusion [Spin’05, Oakland’06]
Automatic all-path execution, all-value checking
– Make input symbolic. Run code. If operation concrete,

do it. If symbolic, track constraints. Generate concrete
solution at end (or on way), feed back to code.

– Finds bugs in real code.
Zero false positives.

– But, still very early in research cycle.
Three ways to look at what’s going on
– Grammar extraction.
– Turn code inside out from input consumer to generator
– Sort-of Heisenberg effect: observations perturb symbolic

inputs into increasingly concrete ones. More definitive
observation = more definitive perturbation.

Future work
Automatic “hardening”
– Assume: EXE finds error and has accurate, complete path

constraints.
– Then: can translate constraints to if-statements and

reject concrete input that satisfies.
– Example: wrap up disk reads. “Cannot mount.” Or reject

network packets that crash system.
Automatic exploit generation.
– Compile Linux with EXE. Mark data from copy_from_user

as symbolic. (System call params if fancy)
– Find paths to bugs.
– Generate concrete input + C code to call kernel.
– Mechanized way to produce exploits.

	EXecution generated Executions:�Automatically generating inputs of death.
	Goal: find many bugs in systems code
	EXE: EXecution generated Executions
	The toy example
	The mechanics
	Isn’t exponential expensive?
	Where we’re going and why.
	Mixed execution
	Untyped memory
	Symbolic memory expressions.
	Example: symbolic memory reads and writes
	Example: symbolic memory reads and writes
	Automatic, systematic corner cases hitting
	Universal checks.
	Generalized checking.
	Putting it all together
	Limits
	Talk overview
	Automatically generating malicious disks.
	A galactic view [Oakland’06]
	Checking Linux FSes with EXE
	Results
	Generated disk for JFS, Linux 2.4.27.
	BPF, Linux packet filters
	Results: BPF, trivial exploit.
	Linux Filter
	Conclusion [Spin’05, Oakland’06]
	Future work

