Directed Model Checking
of Web Applications

Michael Martin Monica Lam
Stanford University
March 20, 2006

Overview

m Votivation

m Overview of Approach
m Basic Technique

m Refined Technique

m Experimental Results

Where We Stand

m Dynamic Analysis: POL
— Pattern language on traces
— Java-like syntax
— Triggers actions on matches

m Target Domain: Java web applications
— Online defense against some attacks
— Detect intrusions or application errors

Sample POL Query

query StringProp (object * Xx)
returns object * y;
matches { y.append(x) | y = x.toString(); }

query StringPropStar (object * x)
returns object * y;
uses object * temp;
matches {
y I= X
| { temp = StringProp(x); y := StringPropStar(temp); }
by

query main

returns object String source, tainted;

matches {
source = javax.servlet._http.HttpServlet.getParameter();
tainted := StringPropStar(source);
jJava.sgl .Connection.prepareStatement(tainted);

Online Isn't Good Enough

m Some problems can'’t be fixed online
m Catching a match won't tell why

m Not systematic

m Overhead Is a continuing cost

Catching everything ahead of time is better

Systematic Testing

m Simple execution model
— String comes in (URL)
— String goes out (\Web page)
— Repeat
m Application state mutable by requests
— Typically per-user, occasionally global
m Problem is input generation
— Find URL sequences that excercise app
— URLs In Isolation are nice but not sufficient

Overview

= Motivation

m Overview of Approach
m Basic Technique

m Refined Technique

m Experimental Results

Input Generation

m Surprisingly feasible for Java apps
— Java webapps self-document
— “Servlet container” parses the URL
— We generate the parsed data, not URLS

m Simulate databases and rest of backend
m Produces a self-contained application

Model Checking

m Apply dynamic instrumentation to app

m Model check complete package
— PQL match Is just part of the program

m Millions of possible requests

m Solution: Guide the checker
— POL Query informs static analysis
— Analysis results give priorities for inputs

Experimental Results

m Proof of Feasibility.

— Duplicated dynamic results from initial work with
POL

— Dynamically triggered bugs only static found
previously

m Found new bugs

— Improved harness found additional injection
vectors

— Static heuristics moved matches
m Cross-request Analysis

— Force logins, handle redirects
— One experiment needed this to run at all

Overview

m Motivation

m Overview of Approach
m Basic Technique

m Refined Technique

m Experimental Results

Building a Basic Harness

m Java Serviets self-document

m web.xml specifies all entry points
—servlet-class: doGet(), doPost()
—Ffilter-class
— listener

m User input I1s handled purely via the
HttpServiletRequest class

m Handled with reflection “in the wild”
— Hardcoded In harness

Building a Basic Harness

m Other frameworks build on Serviets

m Apache Struts Is a popular MVC
framework for this purpose

m Only one servlet, which dispatches to
Actions

m User Iinput Is preconstrained to fit into
ActionForms

Modeling the Environment

m Randomly select entry points
— Each is one URL
— Web page layout is and must be ignored

m Randomly fill in user input
— Pool of possible responses

— Currently hand-generated
» numbers
» booleans
» General strings

— Select values lazily

Running the Dynamic Analysis

m Online analyses just work
— Checker does backtracking
— Checker does resource management

m File access not allowed
— Hardcode data from analysis config

m POQL dynamic works nearly unchanged
— Query compiled into static Initializer
— Signal model checker on match

Running the Model Checker

m Java Pathfinder Is straightforward
m However, too many combinations
m Complete check: 10-15 hours

m Matches fall into two categories:
— Rare
— Nearly universal

m Checking stops on match or error

Controlling the Model Checker

m Keep log of random decisions

m Force backtracks on:
— Paths checked In previous run
— Uninteresting error

m Choose selection order
— Glve priority to “interesting” entry points
— Static analysis to find interesting points
— Various heuristics based on PQL query

Overview

m Motivation

m Overview of Approach
m Basic Technique

m Refined Technique

m Experimental Results

Simplest Heuristic

m Centers on “final events”
— A final event completes a PQL match

m No reguest lacking final events Is
Interesting

m Call graph analysis

— Credit each final event to any entry point
that can call it

m Priority to actions with most final events

Full-Query Heuristic

m Check for matches of the entire query
m Full context-sensitive analysis

m Requests can interfere
— Solution: Individual harnesses for actions

m Sort by:
— Relevant program points
— Number of possible combinations

Find Matches Fast

= \We want to optimize matches over time

m Model checker Is depth-first
— Actions are completely exhausted
— Test cases grow exponentially

m Get small actions out of the way first
— 2 parameters: < 5 seconds to search
— Many actions have > 10 parameters

m May conflict with prior heuristics

Finding Cross-Reguest Matches

= Naive approach:
— All reguest chains of length 1
— All reqguest chains of length 2
— All request chains of length 3

— Repeat until patience runs out

m Patience runs out at “chains of length 1”

Heuristics Sort of Work

m Simple final-event heuristic helps a bit
— Only constrains the last request

m Full-Query Heuristic helps more
— “Individual harnesses” built for sequences

m Both too coarse
— Ignore that HTTP Is stateless

m Must track information flow across
requests

Persistent State In Servlets

m [he HEtpSession class
— Simple key-value mapping
— Per-user
— Persists across user-requests

m Servlet fields
— Servlets are singletons

— Mutable servlet fields are possible
» Highly deprecated

m Databases, Filesystems, etc.

Dependencies

m [wo web requests A and B

m A may depend on B If:
— B writes a value v to a key k In Its session
— A reads from key k In Its session

m Only check sequences where:

— For every request R, some subsequent
request may depend on R

— Final request passes earlier heuristics

Finding Dependencies

m This Is surprisingly feasible statically

m Keys are almost always constant strings
— Often, static final fields
— Results immediate from pointer analysis

m Approximate soundly
— Non-constants can be anything
— Didn’t come up In our experiments

Overview

m Motivation

m Overview of Approach
m Basic Technique

m Refined Technique

m Experimental Results

Experimental Topics

m Revisit an old application
— More static bugs than dynamic
— Use model checking to close the gap

m Analyze new applications
— Search for unknown bugs

m Test optimization heuristics

Experimental Results

Application |Injs [Actions |Simple |Full Chains
personalblog |3 15 3 2 0)
Jgossip 0 80 /1 0 410

jorganizer 38 46 31 18 96

Legacy Case: personalblog

m Appeared in OOPSLA’'05 PQL paper

— 2 possible SOQL injections found statically
— Only 1 dynamically confirmed

m Built a new harness, model-checked

— Found both static cases dynamically

— Resolving ActionForm reflection
discovered a third injection

m Many unchecked exceptions from
invalid input

personalblog: Heuristics

m Basic heuristic extremely effective

— Top two actions to test contained all three
vulnerabilities

— No actions actually eliminated

m Full-query heuristic restricts results to
just the two vulnerable actions

m No cross-request vulnerabillities found

New case: |gossIp

m Simple heuristics do not reject anything
® No Injections found
m Nearly all SQL from string constants

m Exception passed through a sanitizer
— Searched for non-constant query string
— Code Inspection on sanitizer looked OK

m Strong evidence code Is clean

New case: jorganizer

= Had many traditional injections
m None reachable If Session data wrong
m Request analysis works this out

Related Work

m Model Chec
— SPIN, Banc

KEI'S
era, CMC, JPF

m Model Chec

Kers as bug finders

— FISC, WehSSARI

m Bug Finders

— Metal, Partigle, PREfix, Clouseau

m [nput Generation
— Korat, DART, Cadar

Conclusions

m Model Checking servlets Is feasible
— Finds bugs
— Servlets are well-documented

m Multirequest tracking Is important
— Static analysis tracks important cases

m Tightly bound hybrid analysis
— Static harness directly models environment
— Dynamic lists out all possible flow

	Directed Model Checking �of Web Applications
	Overview
	Where We Stand
	Sample PQL Query
	Online Isn’t Good Enough
	Systematic Testing
	Overview
	Input Generation
	Model Checking
	Experimental Results
	Overview
	Building a Basic Harness
	Building a Basic Harness
	Modeling the Environment
	Running the Dynamic Analysis
	Running the Model Checker
	Controlling the Model Checker
	Overview
	Simplest Heuristic
	Full-Query Heuristic
	Find Matches Fast
	Finding Cross-Request Matches
	Heuristics Sort of Work
	Persistent State in Servlets
	Dependencies
	Finding Dependencies
	Overview
	Experimental Topics
	Experimental Results
	Legacy Case: personalblog
	personalblog: Heuristics
	New case: jgossip
	New case: jorganizer
	Related Work
	Conclusions

