
Directed Model Checking 
of Web Applications

Michael Martin Monica Lam
Stanford University

March 20, 2006



Overview

Motivation
Overview of Approach
Basic Technique
Refined Technique
Experimental Results



Where We Stand

Dynamic Analysis: PQL
– Pattern language on traces
– Java-like syntax
– Triggers actions on matches

Target Domain: Java web applications
– Online defense against some attacks
– Detect intrusions or application errors



Sample PQL Query
query StringProp (object * x)
returns object * y;
matches { y.append(x) | y = x.toString(); }

query StringPropStar (object * x)
returns object * y;
uses object * temp;
matches {

y := x
| { temp := StringProp(x); y := StringPropStar(temp); }

}

query main ()
returns object String source, tainted;
matches {

source = javax.servlet.http.HttpServlet.getParameter();
tainted := StringPropStar(source);
java.sql.Connection.prepareStatement(tainted);

}



Online Isn’t Good Enough

Some problems can’t be fixed online
Catching a match won’t tell why
Not systematic
Overhead is a continuing cost

Catching everything ahead of time is better



Systematic Testing

Simple execution model
– String comes in (URL)
– String goes out (Web page)
– Repeat

Application state mutable by requests
– Typically per-user, occasionally global

Problem is input generation
– Find URL sequences that excercise app
– URLs in isolation are nice but not sufficient



Overview

Motivation
Overview of Approach
Basic Technique
Refined Technique
Experimental Results



Input Generation

Surprisingly feasible for Java apps
– Java webapps self-document
– “Servlet container” parses the URL
– We generate the parsed data, not URLs

Simulate databases and rest of backend
Produces a self-contained application



Model Checking

Apply dynamic instrumentation to app
Model check complete package
– PQL match is just part of the program

Millions of possible requests
Solution: Guide the checker
– PQL Query informs static analysis
– Analysis results give priorities for inputs



Experimental Results

Proof of Feasibility
– Duplicated dynamic results from initial work with 

PQL
– Dynamically triggered bugs only static found 

previously
Found new bugs
– Improved harness found additional injection 

vectors
– Static heuristics moved matches

Cross-request Analysis
– Force logins, handle redirects
– One experiment needed this to run at all



Overview

Motivation
Overview of Approach
Basic Technique
Refined Technique
Experimental Results



Building a Basic Harness

Java Servlets self-document
web.xml specifies all entry points
– servlet-class: doGet(), doPost()
– filter-class
– listener

User input is handled purely via the 
HttpServletRequest class
Handled with reflection “in the wild”
– Hardcoded in harness



Building a Basic Harness

Other frameworks build on Servlets
Apache Struts is a popular MVC 
framework for this purpose
Only one servlet, which dispatches to 
Actions
User input is preconstrained to fit into 
ActionForms



Modeling the Environment

Randomly select entry points
– Each is one URL
– Web page layout is and must be ignored

Randomly fill in user input
– Pool of possible responses
– Currently hand-generated

» numbers
» booleans
» General strings

– Select values lazily



Running the Dynamic Analysis

Online analyses just work
– Checker does backtracking
– Checker does resource management

File access not allowed
– Hardcode data from analysis config

PQL dynamic works nearly unchanged
– Query compiled into static initializer
– Signal model checker on match



Running the Model Checker

Java Pathfinder is straightforward
However, too many combinations
Complete check: 10-15 hours
Matches fall into two categories:
– Rare
– Nearly universal

Checking stops on match or error



Controlling the Model Checker

Keep log of random decisions
Force backtracks on:
– Paths checked in previous run
– Uninteresting error

Choose selection order
– Give priority to “interesting” entry points
– Static analysis to find interesting points
– Various heuristics based on PQL query



Overview

Motivation
Overview of Approach
Basic Technique
Refined Technique
Experimental Results



Simplest Heuristic

Centers on “final events”
– A final event completes a PQL match

No request lacking final events is 
interesting
Call graph analysis
– Credit each final event to any entry point 

that can call it
Priority to actions with most final events



Full-Query Heuristic

Check for matches of the entire query
Full context-sensitive analysis
Requests can interfere
– Solution: Individual harnesses for actions

Sort by:
– Relevant program points
– Number of possible combinations



Find Matches Fast

We want to optimize matches over time
Model checker is depth-first
– Actions are completely exhausted
– Test cases grow exponentially

Get small actions out of the way first
– 2 parameters: < 5 seconds to search
– Many actions have > 10 parameters

May conflict with prior heuristics



Finding Cross-Request Matches

Naïve approach:
– All request chains of length 1
– All request chains of length 2
– All request chains of length 3
– ...
– Repeat until patience runs out

Patience runs out at “chains of length 1”



Heuristics Sort of Work

Simple final-event heuristic helps a bit
– Only constrains the last request

Full-Query Heuristic helps more
– “Individual harnesses” built for sequences

Both too coarse
– Ignore that HTTP is stateless

Must track information flow across 
requests 



Persistent State in Servlets

The HttpSession class
– Simple key-value mapping
– Per-user
– Persists across user-requests

Servlet fields
– Servlets are singletons
– Mutable servlet fields are possible

» Highly deprecated

Databases, Filesystems, etc.



Dependencies

Two web requests A and B
A may depend on B if:
– B writes a value v to a key k in its session
– A reads from key k in its session

Only check sequences where:
– For every request R, some subsequent 

request may depend on R
– Final request passes earlier heuristics



Finding Dependencies

This is surprisingly feasible statically
Keys are almost always constant strings
– Often, static final fields
– Results immediate from pointer analysis

Approximate soundly
– Non-constants can be anything
– Didn’t come up in our experiments



Overview

Motivation
Overview of Approach
Basic Technique
Refined Technique
Experimental Results



Experimental Topics

Revisit an old application
– More static bugs than dynamic
– Use model checking to close the gap

Analyze new applications
– Search for unknown bugs

Test optimization heuristics



Experimental Results

Application Injs Actions Simple Full Chains
personalblog 3 15 3 2 0

jgossip 0 80 71 0 410

jorganizer 8 46 31 18 96



Legacy Case: personalblog

Appeared in OOPSLA’05 PQL paper
– 2 possible SQL injections found statically
– Only 1 dynamically confirmed

Built a new harness, model-checked
– Found both static cases dynamically
– Resolving ActionForm reflection 

discovered a third injection
Many unchecked exceptions from 
invalid input



personalblog: Heuristics

Basic heuristic extremely effective
– Top two actions to test contained all three 

vulnerabilities
– No actions actually eliminated

Full-query heuristic restricts results to 
just the two vulnerable actions
No cross-request vulnerabilities found



New case: jgossip

Simple heuristics do not reject anything
No injections found
Nearly all SQL from string constants
Exception passed through a sanitizer
– Searched for non-constant query string
– Code inspection on sanitizer looked OK

Strong evidence code is clean



New case: jorganizer

Had many traditional injections
None reachable if Session data wrong
Request analysis works this out



Related Work

Model Checkers
– SPIN, Bandera, CMC, JPF

Model Checkers as bug finders
– FiSC, WebSSARI

Bug Finders
– Metal, Partiqle, PREfix, Clouseau

Input Generation
– Korat, DART, Cadar



Conclusions

Model Checking servlets is feasible
– Finds bugs
– Servlets are well-documented

Multirequest tracking is important
– Static analysis tracks important cases

Tightly bound hybrid analysis
– Static harness directly models environment
– Dynamic lists out all possible flow


	Directed Model Checking �of Web Applications
	Overview
	Where We Stand
	Sample PQL Query
	Online Isn’t Good Enough
	Systematic Testing
	Overview
	Input Generation
	Model Checking
	Experimental Results
	Overview
	Building a Basic Harness
	Building a Basic Harness
	Modeling the Environment
	Running the Dynamic Analysis
	Running the Model Checker
	Controlling the Model Checker
	Overview
	Simplest Heuristic
	Full-Query Heuristic
	Find Matches Fast
	Finding Cross-Request Matches
	Heuristics Sort of Work
	Persistent State in Servlets
	Dependencies
	Finding Dependencies
	Overview
	Experimental Topics
	Experimental Results
	Legacy Case: personalblog
	personalblog: Heuristics
	New case: jgossip
	New case: jorganizer
	Related Work
	Conclusions

