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Where We Stand

Dynamic Analysis: PQL
– Pattern language on traces
– Java-like syntax
– Triggers actions on matches

Target Domain: Java web applications
– Online defense against some attacks
– Detect intrusions or application errors



Sample PQL Query
query StringProp (object * x)
returns object * y;
matches { y.append(x) | y = x.toString(); }

query StringPropStar (object * x)
returns object * y;
uses object * temp;
matches {

y := x
| { temp := StringProp(x); y := StringPropStar(temp); }

}

query main ()
returns object String source, tainted;
matches {

source = javax.servlet.http.HttpServlet.getParameter();
tainted := StringPropStar(source);
java.sql.Connection.prepareStatement(tainted);

}



Online Isn’t Good Enough

Some problems can’t be fixed online
Catching a match won’t tell why
Not systematic
Overhead is a continuing cost

Catching everything ahead of time is better



Systematic Testing

Simple execution model
– String comes in (URL)
– String goes out (Web page)
– Repeat

Application state mutable by requests
– Typically per-user, occasionally global

Problem is input generation
– Find URL sequences that excercise app
– URLs in isolation are nice but not sufficient
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Input Generation

Surprisingly feasible for Java apps
– Java webapps self-document
– “Servlet container” parses the URL
– We generate the parsed data, not URLs

Simulate databases and rest of backend
Produces a self-contained application



Model Checking

Apply dynamic instrumentation to app
Model check complete package
– PQL match is just part of the program

Millions of possible requests
Solution: Guide the checker
– PQL Query informs static analysis
– Analysis results give priorities for inputs



Experimental Results

Proof of Feasibility
– Duplicated dynamic results from initial work with 

PQL
– Dynamically triggered bugs only static found 

previously
Found new bugs
– Improved harness found additional injection 

vectors
– Static heuristics moved matches

Cross-request Analysis
– Force logins, handle redirects
– One experiment needed this to run at all
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Building a Basic Harness

Java Servlets self-document
web.xml specifies all entry points
– servlet-class: doGet(), doPost()
– filter-class
– listener

User input is handled purely via the 
HttpServletRequest class
Handled with reflection “in the wild”
– Hardcoded in harness



Building a Basic Harness

Other frameworks build on Servlets
Apache Struts is a popular MVC 
framework for this purpose
Only one servlet, which dispatches to 
Actions
User input is preconstrained to fit into 
ActionForms



Modeling the Environment

Randomly select entry points
– Each is one URL
– Web page layout is and must be ignored

Randomly fill in user input
– Pool of possible responses
– Currently hand-generated

» numbers
» booleans
» General strings

– Select values lazily



Running the Dynamic Analysis

Online analyses just work
– Checker does backtracking
– Checker does resource management

File access not allowed
– Hardcode data from analysis config

PQL dynamic works nearly unchanged
– Query compiled into static initializer
– Signal model checker on match



Running the Model Checker

Java Pathfinder is straightforward
However, too many combinations
Complete check: 10-15 hours
Matches fall into two categories:
– Rare
– Nearly universal

Checking stops on match or error



Controlling the Model Checker

Keep log of random decisions
Force backtracks on:
– Paths checked in previous run
– Uninteresting error

Choose selection order
– Give priority to “interesting” entry points
– Static analysis to find interesting points
– Various heuristics based on PQL query
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Simplest Heuristic

Centers on “final events”
– A final event completes a PQL match

No request lacking final events is 
interesting
Call graph analysis
– Credit each final event to any entry point 

that can call it
Priority to actions with most final events



Full-Query Heuristic

Check for matches of the entire query
Full context-sensitive analysis
Requests can interfere
– Solution: Individual harnesses for actions

Sort by:
– Relevant program points
– Number of possible combinations



Find Matches Fast

We want to optimize matches over time
Model checker is depth-first
– Actions are completely exhausted
– Test cases grow exponentially

Get small actions out of the way first
– 2 parameters: < 5 seconds to search
– Many actions have > 10 parameters

May conflict with prior heuristics



Finding Cross-Request Matches

Naïve approach:
– All request chains of length 1
– All request chains of length 2
– All request chains of length 3
– ...
– Repeat until patience runs out

Patience runs out at “chains of length 1”



Heuristics Sort of Work

Simple final-event heuristic helps a bit
– Only constrains the last request

Full-Query Heuristic helps more
– “Individual harnesses” built for sequences

Both too coarse
– Ignore that HTTP is stateless

Must track information flow across 
requests 



Persistent State in Servlets

The HttpSession class
– Simple key-value mapping
– Per-user
– Persists across user-requests

Servlet fields
– Servlets are singletons
– Mutable servlet fields are possible

» Highly deprecated

Databases, Filesystems, etc.



Dependencies

Two web requests A and B
A may depend on B if:
– B writes a value v to a key k in its session
– A reads from key k in its session

Only check sequences where:
– For every request R, some subsequent 

request may depend on R
– Final request passes earlier heuristics



Finding Dependencies

This is surprisingly feasible statically
Keys are almost always constant strings
– Often, static final fields
– Results immediate from pointer analysis

Approximate soundly
– Non-constants can be anything
– Didn’t come up in our experiments
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Experimental Topics

Revisit an old application
– More static bugs than dynamic
– Use model checking to close the gap

Analyze new applications
– Search for unknown bugs

Test optimization heuristics



Experimental Results

Application Injs Actions Simple Full Chains
personalblog 3 15 3 2 0

jgossip 0 80 71 0 410

jorganizer 8 46 31 18 96



Legacy Case: personalblog

Appeared in OOPSLA’05 PQL paper
– 2 possible SQL injections found statically
– Only 1 dynamically confirmed

Built a new harness, model-checked
– Found both static cases dynamically
– Resolving ActionForm reflection 

discovered a third injection
Many unchecked exceptions from 
invalid input



personalblog: Heuristics

Basic heuristic extremely effective
– Top two actions to test contained all three 

vulnerabilities
– No actions actually eliminated

Full-query heuristic restricts results to 
just the two vulnerable actions
No cross-request vulnerabilities found



New case: jgossip

Simple heuristics do not reject anything
No injections found
Nearly all SQL from string constants
Exception passed through a sanitizer
– Searched for non-constant query string
– Code inspection on sanitizer looked OK

Strong evidence code is clean



New case: jorganizer

Had many traditional injections
None reachable if Session data wrong
Request analysis works this out



Related Work

Model Checkers
– SPIN, Bandera, CMC, JPF

Model Checkers as bug finders
– FiSC, WebSSARI

Bug Finders
– Metal, Partiqle, PREfix, Clouseau

Input Generation
– Korat, DART, Cadar



Conclusions

Model Checking servlets is feasible
– Finds bugs
– Servlets are well-documented

Multirequest tracking is important
– Static analysis tracks important cases

Tightly bound hybrid analysis
– Static harness directly models environment
– Dynamic lists out all possible flow
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