

#### Trio: A System for Data, Uncertainty, and Lineage

#### Jennifer Widom





### **Outline of Talk**



- 1. The Motivation
- 2. The Discovery
- 3. The Vision
- 4. The Present
- 5. The Future



#### The Motivation



- Lots of applications have uncertain data (approximate, incomplete, imprecise, inaccurate, ...)
- Lots of the same applications need to track data lineage

Coincidence or Fate?

 Neither is supported by conventional Database Management Systems (DBMSs)



## Applications



#### Deduplication

- Uncertainty: Match and merge
- Lineage: Source records

#### Information extraction

- Uncertainty: Extracted labels and values
- Lineage: Original context

#### Information integration

- Uncertainty: Inconsistent information
- Lineage: Original sources



### Applications



#### Scientific experiments

- Uncertainty: Captured (and derived) data
- Lineage: Layers of views

#### Sensor data

- Uncertainty: Sensor values, missing readings
- Lineage: Original readings, views



### The Discovery



The connection between uncertainty and lineage goes deeper than just a shared need by several applications





### Lineage and Uncertainty



#### Lineage...

- Enables simple and consistent representation of uncertain data
- Correlates uncertainty in query results with uncertainty in the input data
- Can make computation over uncertain data more efficient

Applications use lineage to reduce or resolve uncertainty



# The Vision



#### A new kind of DBMS in which:

- 1. Data
- 2. Uncertainty
- 3. Lineage



are all first-class interrelated concepts



## The Trio Trio



#### 1. Data Model

Simplest extension to relational model that's sufficiently expressive

#### 2. Query Language

Simple extension to SQL with well-defined semantics and intuitive behavior

#### 3. System

A complete open-source DBMS that people want to use



#### The Present



1. Data Model

Uncertainty-Lineage Databases (ULDBs)

- 2. Query Language TriQL
- 3. System

First prototype built on top of standard DBMS



## Running Example: Crime-Solving

Saw(witness,car) // may be uncertain Owns(owner,car) // may be uncertain

Suspects(person) =  $\Pi_{owner}(Saw \bowtie Owns)$ 



### Data Model: Uncertainty



An uncertain database represents a set of possible instances

- Amy saw either a Honda or a Toyota
- Jimmy owns a Toyota, a Mazda, or both
- *Betty saw an Acura with confidence 0.5 or a Toyota with confidence 0.3*
- Hank is a suspect with confidence 0.7





- 1. Alternatives
- 2. '?' (Maybe) Annotations
- 3. Confidences





- 1. Alternatives: uncertainty about value
- 2. '?' (Maybe) Annotations
- 3. Confidences

| Saw (witness,car)                                |         |                          |  |  |  |
|--------------------------------------------------|---------|--------------------------|--|--|--|
| (Amy, Honda) // (Amy, Toyota) // (Amy,<br>Mazda) |         |                          |  |  |  |
| _                                                | witness | car                      |  |  |  |
|                                                  | Amy     | { Honda, Toyota, Mazda } |  |  |  |

Three possible instances





- 1. Alternatives
- 2. '?' (Maybe): uncertainty about existence

?

3. Confidences

Saw (witness,car)

(Amy, Honda) // (Amy, Toyota) // (Amy, Mazda)

(Betty, Acura)

Six possible instances





- 1. Alternatives
- 2. '?' (Maybe) Annotations
- 3. Confidences: weighted uncertainty

| Saw (witness,car)                                              |  |  |
|----------------------------------------------------------------|--|--|
| (Amy, Honda): 0.5 // (Amy,Toyota): 0.3 // (Amy, Mazda):<br>0.2 |  |  |
| (Betty, Acura): 0.6                                            |  |  |

Six possible instances, each with a probability



### **Models for Uncertainty**



- Our model (so far) is not especially new
- We spent some time exploring the space of models for uncertainty [two papers]
- Tension between understandability and expressiveness
  - Our model is understandable
  - But it is not complete, or even closed under common operations



### **Closure and Completeness**



Completeness Can represent all sets of possible instances Closure Can represent results of operations

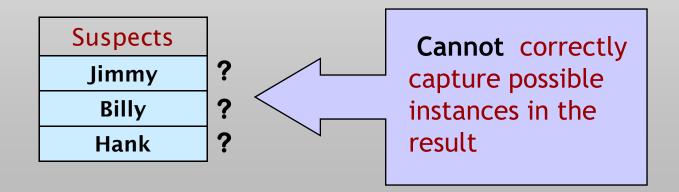
Note: Completeness  $\Rightarrow$  Closure



#### **Our Model is Not Closed**



Saw (witness,car)


(Cathy, Honda) // (Cathy, Mazda) Owns (owner,car)

(Jimmy, Toyota) // (Jimmy, Mazda)

(Billy, Honda)

(Hank, Honda)

Suspects =  $\pi_{owner}(Saw \bowtie Owns)$ 





### Lineage to the Rescue



Lineage (provenance): "where data came from"

- Internal lineage
- External lineage

In Trio: A function  $\lambda$  from alternatives to other alternatives (or external sources)



### **Example with Lineage**




ID Saw (witness,car)

11 (Cathy, Honda) // (Cathy, Mazda)

| ID | Owns (owner,car)                    |  |  |
|----|-------------------------------------|--|--|
| 21 | (Jimmy, Toyota) ∥ (Jimmy,<br>Mazda) |  |  |
| 22 | (Billy, Honda)                      |  |  |
| 23 | (Hank, Honda)                       |  |  |

Suspects =  $\pi_{owner}(Saw \bowtie Owns)$ 





#### Trio Data Model



Uncertainty-Lineage Databases (ULDBs)

[recent paper]

- 1. Alternatives
- 2. '?' (Maybe) Annotations
- 3. Confidences

4. Lineage

ULDBs are closed and complete





Conjunctive lineage sufficient for most operations

- Negative lineage for difference
- Disjunctive lineage for duplicate-elimination
- Minimality of representations
  - Data-minimal
  - Lineage-minimal

Membership problems

Extraction of a relation from a ULDB



# **Querying ULDBs**





- Simple extension to SQL
- Formal semantics, intuitive meaning
- Ability to query confidences and lineage directly

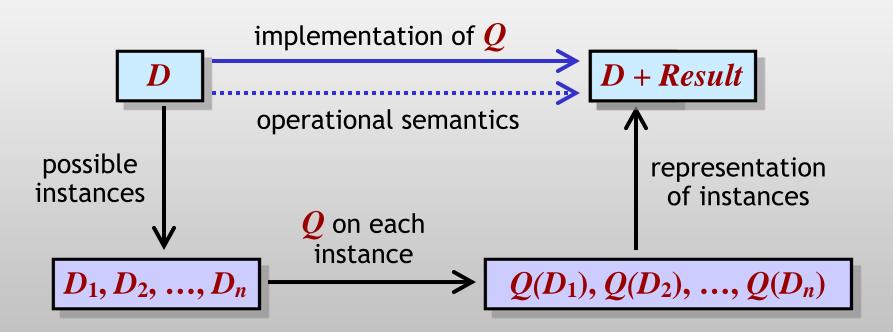


# TriQL Example



|    |                                  | ID | Owns (owner,car)           |  |
|----|----------------------------------|----|----------------------------|--|
| ID | Saw (witness,car)                | 21 | (Jimmy, Toyota) // (Jimmy, |  |
| 11 | (Cathy, Honda) // (Cathy, Mazda) |    | Mazda)                     |  |
|    |                                  | 22 | (Billy, Honda)             |  |
|    |                                  | 23 | (Hank, Honda)              |  |
|    |                                  |    |                            |  |

#### SELECT Owns.person INTO Suspects FROM Saw, Owns WHERE Saw.car = Owns.car


| ID | person |   |                                |
|----|--------|---|--------------------------------|
| 31 | Jimmy  | ? | $\lambda(31) = (11,2), (21,2)$ |
| 32 | Billy  | ? | $\lambda(32) = (11,1), 22$     |
| 33 | Hank   | ? | $\lambda(33) = (11,1), 23$     |



#### **Formal Semantics**



#### Query *Q* on ULDB *D*





## **TriQL: Querying Confidences**



Built-in function: conf()

SELECT Owns.person INTO Suspects FROM Saw, Owns WHERE Saw.car = Owns.car AND conf(Saw) > 0.5 AND conf(Owns) > 0.8



## **TriQL: Querying Lineage**



Built-in join predicate: lineage()

SELECT Saw.witness INTO AccusesHank FROM Suspects, Saw WHERE lineage(Suspects,Saw) AND Suspects.person = 'Hank'

Also lineage\*()



## **Computing Confidences**



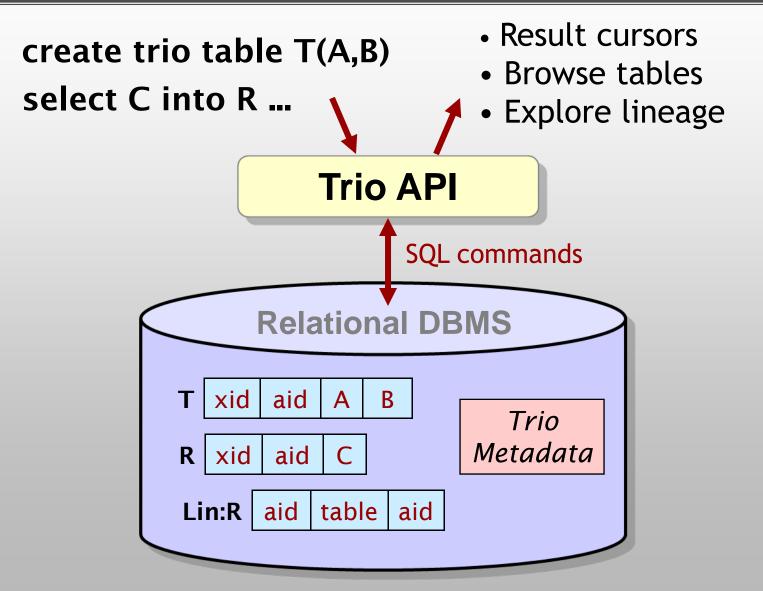
Previous approach (probabilistic databases):

- Each operator computes confidences during query execution
- Only certain query plans allowed
- Our approach
  - Use any query plan
  - Compute confidences afterwards based on lineage



### The Trio System

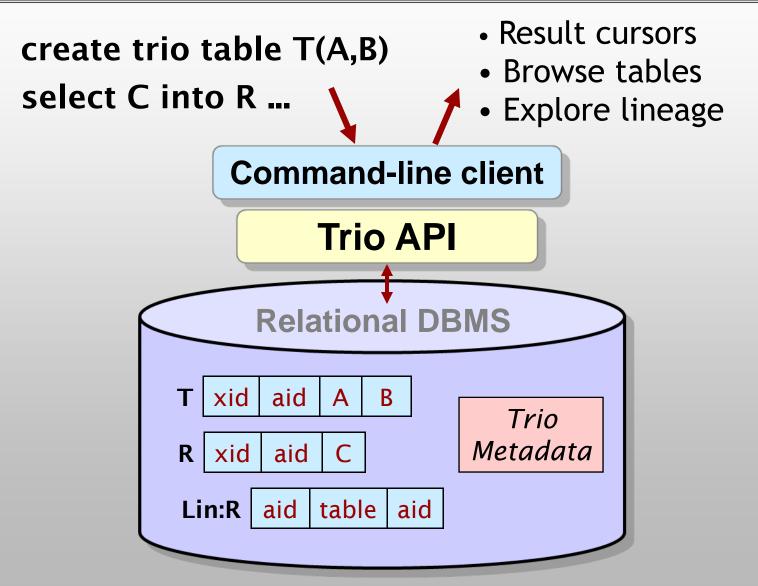



#### Version 1

Entirely on top of conventional DBMS Surprisingly easy and complete, reasonably efficient



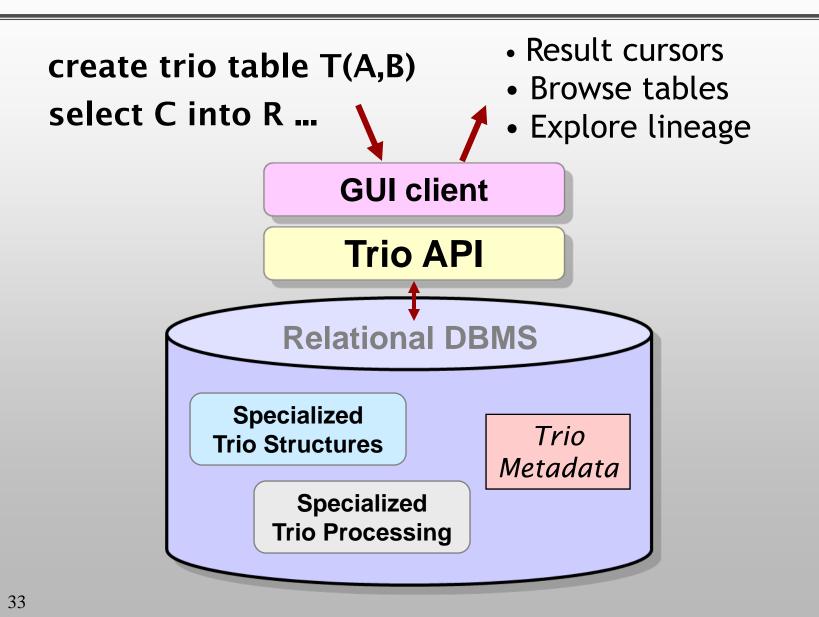
## The Trio System: Version 1








## The Trio System: Version 1








### The Trio System: Version 2





### **Current Topics**



#### **Confidence computation**

• Minimize lineage traversal; memoization; batch computations

#### Updates

- Primitive operations; TriQL update statements
- Additional query constructs
  - "Horizontal" operators; top-*k* by confidence

#### System

• Keep up with research; GUI



#### **Future Directions**



#### Theory, Model, Algorithms

Unlimited opportunities

System

- Storage, indexing, partitioning
- Statistics and query optimization

#### Long Range

- Continuous uncertainty; incomplete relations
- External lineage; versioning







but don't forget the lineage...



#### Search "stanford trio"

[overview paper]

#### Trio group:

Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha Nabar, Jennifer Widom

Special thanks to: Ashok Chandra, Alon Halevy, Jeff Ullman